Page content

Funder: Korean Ministry of Knowledge Economy
Duration: 01 November 2008 – 31 December 2016
Staff Involved: Dr Seng-kwan Choi, Prof Ali Nadjai

This project aims to understand the interacting thermal-structural behaviour of a water-based inorganic intumescent-type fire retardant system at elevated temperatures and to evaluate its thermal performance for applications in fire safety engineering. Once exposed to heat, this system undergoes multiple simultaneous phenomena of (i) thermochemical reaction, (ii) formation of internal porous structure, and (iii) movement of external boundaries. Such heat-related combined behaviours are clearly demonstrated from both experimental and numerical approaches. This research program is constructed in four stages: fundamental material tests (utilising thermogravimetric analyse, differential scanning calorimetry, and electronic furnace) and bench-scale fire tests (using cone calorimetry); clarification of thermal boundaries of the intumescent specimen subjected to test apparatus; numerical simulations on mechanisms of heat transmission through porous structures and intumescence; and verification of the proposed numerical solution. The experimental and numerical examinations systematically interpret the overall thermal-structural mechanism, from microscopic characteristics based on thermo-kinetics to macroscopic behaviours based on heat transfer and thermal expansion.