Funded PhD Opportunity Feedback control sensors for water disinfection

This opportunity is now closed.

Subjects: Engineering and Biomedical Sciences


The problem:

Water borne diseases from drinking unsafe water contribute to high incidence of illness in developing regions.  At least 1.8 billion people globally use a source of drinking water that is faecally contaminated and thus likely to lead to diarrheal illness: nearly 1,000 children die each day due to preventable water and sanitation-related diarrhoeal diseases. In 2010, the UN General Assembly explicitly recognised the human right to water and sanitation. Everyone has the right to sufficient, continuous, safe, acceptable, physically accessible and affordable water for personal and domestic use.  Low cost technologies for safe drinking water have significant potential to improve the health of communities who rely on unsafe water, and thus improve their quality of life through reduced illnesses, reduced absence from employment, improved school attendance, improved family life, and less stress on females (normally responsible for water in households).

The innovative solution:

In the developed World, chlorination of water supplies has effectively irradiated waterborne disease.   There have been attempts to introduce chlorination of water supplies in developing regions, however, this intervention is not readily adopted or sustained. One of the most obvious reasons is that over dosing of chlorine (> 3 ppm, either from tablets, bleach, or bleaching powder) results in unacceptable taste and odour (many of us experience this in tap water).  Also, there are negative health implications of overdosing chlorine including the formation of disinfection by-products which may be carcinogenic. Under dosing of chlorine (<0.5 ppm) means that disinfection may not be effective.  The chlorine demand of the water means that dose based on volume is not effective for controlling the free chlorine concentration.  Therefore, the development of sensors for the determination of free chlorine and feedback control of dosing would be a major step forward in quality assurance for low cost disinfection systems in low to middle income countries (LMICs).

Interdisciplinarity of the project:

The project requires an understanding of water chemistry, the measurement of free chlorine and chlorine demand, and a need for nanomaterials research for electrochemical sensing of free chlorine.  For feedback control of dosing systems, it is necessary to integrate electronics, signal processing, actuators and mechanical components i.e. mechatronics. The testing of disinfection of water requires knowledge of water microbiology and microbiological methods.

This project integrates chemistry, microbiology and mechatronic engineering. This project is directly linked to the GCRF SAFEWATER project funded under the Global Challenges Research Fund UKRI.

The successful candidate will work as part of a large transdisciplinary team in the Ulster Safewater Research Centre. Eligible candidates should have a primary degree in the physical sciences or engineering.

Essential Criteria

  • Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC)



    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £15,009 per annum for three years. EU applicants will only be eligible for the fees component of the studentship (no maintenance award is provided).  For Non EU nationals the candidate must be "settled" in the UK.

Interdisciplinary Competition

Other information

The Doctoral College at Ulster University

Launch of the Doctoral College

Current PhD researchers and an alumnus shared their experiences, career development and the social impact of their work at the launch of the Doctoral College at Ulster University.

Watch Video

Key Dates

Submission Deadline
Monday 18 February 2019
Interview Date
March 2019


Jordanstown campus

Jordanstown campus
The largest of Ulster's campuses

Contact Supervisor

Professor John Byrne

Other Supervisors

Apply online

Visit and quote reference number #344914 when applying for this PhD opportunity