This opportunity is now closed.

Funded PhD Opportunity

Water-Energy Nexus: Developing Technology to Produce Hydrogen from Wastewater

Subject: Architecture, Built Environment and Planning


In the UK wastewater treatment consumes ~1% of the total generated electricity and produces five million tonnes of greenhouse gases.  The sector is under significant pressure to become more energy efficient and has embarked on research initiatives to explore opportunities at the Water-Energy nexus.  Demand for innovative new technologies is also increasing in developing countries where UN guidelines push for improved levels of hygiene and sanitation (on average 35% of wastewater is not collecting worldwide) [1].

The energy content of wastewater is five to ten times greater than the energy required to treat it [2], therefore this ‘waste’ has significant potential to produce a range of energy rich byproducts, including hydrogen [3] – development of the hydrogen economy is highlighted as a Government priority within the recently announced Clean Growth Strategy [4]

The aim of this interdisciplinary project is to develop a Decision Support System that could help wastewater utilities evaluate new and existing energy production technologies and assess the value to their business. Example technologies include: microbial electrolysis cells (MEC), photocatalytic systems, microbial fuel cells (MFC) combined with photoelectrochemical cells (PEC), electrolysers powered by renewable energy sources, and the reforming of biogas produced by wastewater sludge fed anaerobic digestion.

The PhD candidate will work logically through a series of work-packages to investigate and model energy production technologies, initially focusing on MEC which are widely considered to be the most promising technologies [4]. A demonstrator MEC will be developed by the PhD candidate and used to aid in industry and public dissemination of the potential for energy generation from wastewater.

The outputs from the PhD will help wastewater managers to compare different opportunities for the production and use of hydrogen. The model will predict the cost pattern of hydrogen production at local sites, provide insight into the required supporting infrastructure; and show the economic potential of hydrogen production from wastewater. The PhD proposal aligns with the H2020 ALICE project, coordinated by Ulster, and the PhD candidate will have the opportunity to spend time in different European wastewater utilities collecting data and working in collaboration with industry to fully understanding their needs and requirements.

Examples of the impact created from this PhD are:

*Advance knowledge and capability to understand the opportunities for hydrogen production from wastewater, in line with the circular economy approach and UK Government policy.

*Fully understand the economic and market potential for hydrogen production from wastewater.

*Help industry to transition towards “positive energy” wastewater utilities and reduce greenhouse gases – in line with UK targets.

*Reduce the energy demand (and therefore the cost) of wastewater management in both the UK and developing countries.

Central to achieving these goals is the collaboration between Engineering and Life and Health Sciences whereby the mix of disciplines (water, energy and microbiology) will permit the development of demonstrator microbial electrolysis cells with increased efficiencies.

The PhD candidate will have the opportunity to join the H2020 RISE Alice project (, “Accelerate innovation in Urban wastewater management”, which is coordinated by Ulster University. The project is a Research and Staff Exchange, RISE, project that covers all travel expenses for ALICE project partners in order to develop research and knowledge transfer. Several partners in the ALICE Consortium are wastewater facilities and research centres. CIEMAT, for example, is a research centre in the South of Spain, where Ulster have had several s collaborative researchers have tested and evaluated systems for photocatalytic production of hydrogen from wastewater.


[1] IEA, World Energy Outlook 2016

[2] Shizas, I. and Bagley, D.M., 2004. Experimental determination of energy content of unknown organics in municipal wastewater streams. Journal of Energy Engineering, 130(2), pp.45-53.

[3] Zeng, K. and Zhang, D., 2010. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), pp.307-326.

[4] Clean Growth Strategy. Available from:

[5] Escapa, A., San-Martín, M.I. and Morán, A., 2014. Potential use of microbial electrolysis cells in domestic wastewater treatment plants for energy recovery. Frontiers in Energy Research, 2, p.19.

Essential criteria

  • Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC)
  • Experience using research methods or other approaches relevant to the subject domain
  • Sound understanding of subject area as evidenced by a comprehensive research proposal

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • Experience using research methods or other approaches relevant to the subject domain
  • Sound understanding of subject area as evidenced by a comprehensive research proposal
  • A comprehensive and articulate personal statement



    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 14,777 per annum for three years. EU applicants will only be eligible for the fees component of the studentship (no maintenance award is provided).  For Non EU nationals the candidate must be "settled" in the UK.

Other information

The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 19 February 2018

Interview Date
12 March 2018


Apply Online

Contact supervisor

Professor Neil Hewitt

Other supervisors

Related Funded Opportunities in: Architecture, Built Environment and Planning ,

Architecture, Built Environment and Planning

Architecture, Built Environment and Planning

 View Details