We are living in the era where we all are connected through internet to connect, share, and access knowledge. However, with the assumption that infrastructure is available to keep us connected. In a situation of a disaster (e.g. earthquake, flood, and hurricane) this assumption is not valid, and we will need alternative solutions to connect users (people, objects, and their combinations). These solutions, in general, must support high data rates to entertain large number of users and have low latency for mission critical or real-time tasks (e.g. remote surgery in a disaster).
The vision of new wireless technology, the 5G network (5GN), encapsulates many applications e.g. mobile broadband, connected health, and intelligent transportation. To entertain such a wide variety of applications, the 5GN is required to support high date rates, few Gbps, and latency to a fraction of a millisecond as expected by the research communities, telecom manufacturer, and standardization bodies. Due to support of the high data rates and the low latency, the 5GN is a suitable candidate to provide a reliable and secure connectivity platform in a disaster. However, how a 5GN or existing networks can be functional without infrastructure during a disaster leads to find new innovative solutions. Previously, consumer drones were used to monitor and record information by operators in applications like media coverage and site survey. The consumer drones are now getting much interest in research communities with the capability to offload network traffic in scenarios like shopping centre, festivals, concerts and sport stadiums. However, most of the research work is limited to the theoretical aspect and still required validation from the experimental domain to improve and design new and more practical systems, particularly to overcome challenges in the situation of a disaster.
This PhD work will investigate the air-to-ground (A2G) radio propagation channel among drone and users, particularly in the scenarios of a disaster. The focus will be to model the A2G radio propagation channel in the sub-6 GHz and the mmWave band (i.e. 5GN). The outcome of this project will be a step to provide an alternative telecommunication service in a disaster to connect users. The expected new models will be beneficial for both research and industrial communities to understand the A2G radio propagation channel and more importantly to develop a more robust and innovative telecommunication service in a disaster.
Applicants should hold, or expect to obtain, a First or Upper Second Class Honours Degree in a subject relevant to the proposed area of study.
We may also consider applications from those who hold equivalent qualifications, for example, a Lower Second Class Honours Degree plus a Master’s Degree with Distinction.
In exceptional circumstances, the University may consider a portfolio of evidence from applicants who have appropriate professional experience which is equivalent to the learning outcomes of an Honours degree in lieu of academic qualifications.
The University offers the following levels of support:
Full award (full-time PhD fees + DfE level of maintenance grant + RTSG for 3 years).
This scholarship will cover full-time PhD tuition fees and provide the recipient with £18,000 (tbc) maintenance grant per annum for three years (subject to satisfactory academic performance).
This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.
Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.
Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.
Part award (full-time PhD fees + 50% DfE level of maintenance grant + RTSG for 3 years).
This scholarship will cover full-time PhD tuition fees and provide the recipient with £8,000 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.
Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.
Fees only award (PhD fees + RTSG for 3 years).
This scholarship will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.
Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.
The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £18,000 (tbc) per annum for three years (subject to satisfactory academic performance).
This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.
Due consideration should be given to financing your studies. Further information on cost of living
Submission deadline
Monday 19 February 2018
12:00AM
Interview Date
Mid March 2018
Preferred student start date
Mid September 2018
Telephone
Contact by phone
Email
Contact by email