PhD Study : Prevention and Mitigation of Accidents with Hydrogen-powered Vehicles in Confined Space

Apply and key information  

Summary

Hundreds of hydrogen-powered cars and buses are already operating on roads in different countries around the globe. They are parked at garages, maintenance shops, underground parking and pass tunnels and other partially confined spaces. Trucks are delivering hydrogen to refuelling stations. Their routes include tunnels. However, besides some rudimental activities, no dedicated research has been done on the prevention and mitigation of accidents involving hydrogen-powered vehicles in critical infrastructures, e.g. tunnels, garages and maintenance shops, car underground parking, etc. The specific hazards and associated risks of hydrogen vehicles use in tunnels are largely unknown and thus prevention and mitigation strategies are not developed or validated. Previous activities were mainly focussed on the fire scenarios with fossil fuels and did not address the hydrogen specific hazards, like pressure and thermal effects during accidents related with high pressure hydrogen storage.

Therefore, Regulations, Codes and Standards require a scientifically sound basis for the understanding of relevant safety aspects, validated engineering models and tools for reliable prediction of an accident dynamics in confined space, and development of innovative prevention and mitigation strategies and engineering solutions.

The main unresolved safety concerns include but are not limited to: what are requirements to hydrogen-powered vehicles entering confined structures such as tunnels, what are appropriate venting strategies for confined and congested space, what are hydrogen specific prevention and mitigation concepts to efficiently tackle hydrogen dispersion and combustion, would hydrogen pressure and thermal effects impact the integrity of tunnel structures, e.g. concrete spalling, how may an initiating event lead to devastating consequences through the domino effect, and how to prevent catastrophic rupture of a high-pressure hydrogen tank in a fire to eradicate any possibility of devastating blast waves and fireballs in these confined traffic infrastructures, which are generally perceived as hazardous sceneries per se. These knowledge gaps and technological bottlenecks in hydrogen safety hamper the further inherently safer deployment of hydrogen-powered vehicles, and the public acceptance of the technology.

Education in combustion and experience in CFD are welcome. The state-of-the-art software and hardware are available. HySAFER pursues a wide international collaboration strategy through national (EPSRC) and overseas (H2020) research projects.

Essential criteria

Applicants should hold, or expect to obtain, a First or Upper Second Class Honours Degree in a subject relevant to the proposed area of study.

We may also consider applications from those who hold equivalent qualifications, for example, a Lower Second Class Honours Degree plus a Master’s Degree with Distinction.

In exceptional circumstances, the University may consider a portfolio of evidence from applicants who have appropriate professional experience which is equivalent to the learning outcomes of an Honours degree in lieu of academic qualifications.

  • Experience using research methods or other approaches relevant to the subject domain
  • Sound understanding of subject area as evidenced by a comprehensive research proposal

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • A comprehensive and articulate personal statement

Funding and eligibility

The University offers the following levels of support:

Vice Chancellors Research Studentship (VCRS)

The following scholarship options are available to applicants worldwide:

  • Full Award: (full-time tuition fees + £19,000 (tbc))
  • Part Award: (full-time tuition fees + £9,500)
  • Fees Only Award: (full-time tuition fees)

These scholarships will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance) and will provide a £900 per annum research training support grant (RTSG) to help support the PhD researcher.

Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Please note: you will automatically be entered into the competition for the Full Award, unless you state otherwise in your application.

Department for the Economy (DFE)

The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £19,000 (tbc) per annum for three years (subject to satisfactory academic performance).

This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

  • Candidates with pre-settled or settled status under the EU Settlement Scheme, who also satisfy a three year residency requirement in the UK prior to the start of the course for which a Studentship is held MAY receive a Studentship covering fees and maintenance.
  • Republic of Ireland (ROI) nationals who satisfy three years’ residency in the UK prior to the start of the course MAY receive a Studentship covering fees and maintenance (ROI nationals don’t need to have pre-settled or settled status under the EU Settlement Scheme to qualify).
  • Other non-ROI EU applicants are ‘International’ are not eligible for this source of funding.
  • Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Due consideration should be given to financing your studies. Further information on cost of living

The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 19 February 2018
12:00AM

Interview Date
12 March 2018

Preferred student start date
mid September 2018

Applying

Apply Online  

Contact supervisor

Professor Vladimir Molkov

Other supervisors