This opportunity is now closed.

Funded PhD Opportunity

Prevention and Mitigation of Accidents with Hydrogen-powered Vehicles in Confined Space

Subject: Architecture, Built Environment and Planning


Summary

Hundreds of hydrogen-powered cars and buses are already operating on roads in different countries around the globe. They are parked at garages, maintenance shops, underground parking and pass tunnels and other partially confined spaces. Trucks are delivering hydrogen to refuelling stations. Their routes include tunnels. However, besides some rudimental activities, no dedicated research has been done on the prevention and mitigation of accidents involving hydrogen-powered vehicles in critical infrastructures, e.g. tunnels, garages and maintenance shops, car underground parking, etc. The specific hazards and associated risks of hydrogen vehicles use in tunnels are largely unknown and thus prevention and mitigation strategies are not developed or validated. Previous activities were mainly focussed on the fire scenarios with fossil fuels and did not address the hydrogen specific hazards, like pressure and thermal effects during accidents related with high pressure hydrogen storage.

Therefore, Regulations, Codes and Standards require a scientifically sound basis for the understanding of relevant safety aspects, validated engineering models and tools for reliable prediction of an accident dynamics in confined space, and development of innovative prevention and mitigation strategies and engineering solutions.

The main unresolved safety concerns include but are not limited to: what are requirements to hydrogen-powered vehicles entering confined structures such as tunnels, what are appropriate venting strategies for confined and congested space, what are hydrogen specific prevention and mitigation concepts to efficiently tackle hydrogen dispersion and combustion, would hydrogen pressure and thermal effects impact the integrity of tunnel structures, e.g. concrete spalling, how may an initiating event lead to devastating consequences through the domino effect, and how to prevent catastrophic rupture of a high-pressure hydrogen tank in a fire to eradicate any possibility of devastating blast waves and fireballs in these confined traffic infrastructures, which are generally perceived as hazardous sceneries per se. These knowledge gaps and technological bottlenecks in hydrogen safety hamper the further inherently safer deployment of hydrogen-powered vehicles, and the public acceptance of the technology.

Education in combustion and experience in CFD are welcome. The state-of-the-art software and hardware are available. HySAFER pursues a wide international collaboration strategy through national (EPSRC) and overseas (H2020) research projects.


Essential criteria

  • To hold, or expect to achieve by 15 August, an Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC) in a related or cognate field.
  • Experience using research methods or other approaches relevant to the subject domain
  • Sound understanding of subject area as evidenced by a comprehensive research proposal

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • A comprehensive and articulate personal statement

Funding

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Vice Chancellors Research Studentship (VCRS)

    Full award (full-time PhD fees + DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £15,000 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Bursary (VCRB)

    Part award (full-time PhD fees + 50% DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £7,500 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Fees Bursary (VCRFB)

    Fees only award (PhD fees + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 19 February 2018

Interview Date
12 March 2018


Applying

Apply Online  


Contact supervisor

Professor Vladimir Molkov


Other supervisors

Related Funded Opportunities

Creating an integrated energy management strategy for sustainable cities

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Civic Ecology and Life Infrastructure: Humanitarian Infrastructure Development

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Evolution of the race track / tire interface

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Structures Fire Behaviour and Protections Fire Performance

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Planning for Community Resilience: bridging the policy-practice gap

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Fire: Human behaviour, Community Safety and Risk Assessment

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Nanoparticles based Solar Energy and Energy Storage (Nano_SEES) System

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Solidification of point cloud data for irregular shapes

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Healthy Urban Environments. Assessing the needs and expectations of Young People across European Cities

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Fire Dynamics and Material Flammability

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Net and Autonomous Zero Emission Building (NZEB) Concepts & Strategies for Temperate Climates: UK/Northern Ireland

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Architecture, Built Environment and Planning

Subject: Architecture, Built Environment and Planning

 View details

Co-Designing Child Friendly Places: Growing the Resilience of Children through Inclusive Planning

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Prevention and mitigation of accidents with hydrogen vehicles in underground parking

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Development of an innovative Building Integrated, Solar, Climate COntrol Facade (BISCCOF) using thermal diode technology

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Explosion-free in a fire composite storage cylinder for compressed gas

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

The Impact of policy and the application of regulatory controls on the achievement of overarching sustainability goals.

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Assessment of hazards of high-pressure hydrogen tank rupture using coupled CFD-FEM modelling

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Sustainable Technologies in Energy, Water and Agriculture for Rural Development (STEWARD)

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details