PhD Study : Low Temperature Plasma Treatment of Cancer: Towards In-Vivo Implementation

Apply and key information  

Summary

Low temperature non-equilibrium plasmas have recently demonstrated remarkable potential for treatment of cancer and other diseases such as antibiotic resistant infections. By overcoming the challenges inherent in controlling a plasma in contact with liquid, we can draw on the many advantages that such an interaction can bring. In particular low energy plasma-liquid systems can generate large quantities of reactive oxygen species, e.g. the hydroxyl radical (OH) that are normally delivered by radiotherapy and chemotherapy.

Plasma-liquid systems are highly complex and current research is undertaken on a number of strata including fundamental physical chemical reactions, biomolecule interactions, cell and tissue studies and ultimately in vivo studies on appropriate disease targets. All plasma approaches to date are limited to superficial cancers, e.g. mouth and skin, and wounds. The potential for using such plasmas for treatment inside the body are fraught with difficulty due to the high electric fields and currents required and the presence of UV and possibly elevated gas temperatures.

In NIBEC we have developed a radically new approach called Droplet In Plasma (DiP) whereby the plasma itself is kept well away from the target tissue. Instead we pass a stream of liquid microdroplets through the plasma. These become activated with e.g. OH radicals which can be transported very quickly to the target, in a matter of milliseconds, before the reactivity decays. We have published our results in high impact journals, e.g. Nano Letters. We have demonstrated the efficacy of these droplets in killing bacteria from a long distance (> 10 cm) away. The next stage requires investigation directly relevant to in-vivo cancer treatment, namely what are the optimal conditions for generating the appropriate reactive chemistry, how this chemistry effects the biological targets and how does efficacy change with distance.

This interdisciplinary partnership between NIBEC and Biomedical Sciences provides a valuable opportunity to bring together our plasma and biological expertise towards a shared goal of advancing the translation to viable plasma treatment. In particular, this partnership offers the student the opportunity to study the effect of our DiP system on damage to amino acids and DNA, using HPLC and mass spectrometry complemented with other techniques such as RAMAN/FTIR. However, we have the exciting possibility of studying more advanced targets in the HIF (hypoxia inducible factor) using 3D bio-printed in-vitro models derived under hypoxic condition.

Finally, we intend to test our plasma in murine models of inflammation associated cancer. Tentative evidence to date suggests plasma exposure can affect cell signalling and promote an immunogenic response leading to immunogenic cell death (ICD). In this project, the histological evaluation of immune response coupled with quantitative knowledge of OH (and other) radical fluxes would lead to a significant advance and we would expect to achieve publication in high impact factor scientific journals.

Essential criteria

Applicants should hold, or expect to obtain, a First or Upper Second Class Honours Degree in a subject relevant to the proposed area of study.

We may also consider applications from those who hold equivalent qualifications, for example, a Lower Second Class Honours Degree plus a Master’s Degree with Distinction.

In exceptional circumstances, the University may consider a portfolio of evidence from applicants who have appropriate professional experience which is equivalent to the learning outcomes of an Honours degree in lieu of academic qualifications.

  • Sound understanding of subject area as evidenced by a comprehensive research proposal

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • First Class Honours (1st) Degree
  • Masters at 65%
  • Work experience relevant to the proposed project
  • Publications - peer-reviewed

Funding and eligibility

The University offers the following levels of support:

Department for the Economy (DFE)

The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £19,000 (tbc) per annum for three years (subject to satisfactory academic performance).

This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

  • Candidates with pre-settled or settled status under the EU Settlement Scheme, who also satisfy a three year residency requirement in the UK prior to the start of the course for which a Studentship is held MAY receive a Studentship covering fees and maintenance.
  • Republic of Ireland (ROI) nationals who satisfy three years’ residency in the UK prior to the start of the course MAY receive a Studentship covering fees and maintenance (ROI nationals don’t need to have pre-settled or settled status under the EU Settlement Scheme to qualify).
  • Other non-ROI EU applicants are ‘International’ are not eligible for this source of funding.
  • Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Due consideration should be given to financing your studies. Further information on cost of living

The Doctoral College at Ulster University

Key dates

Submission deadline
Friday 7 February 2020
12:00AM

Interview Date
March 2020

Preferred student start date
September 2020

Applying

Apply Online  

Contact supervisor

Professor Paul Maguire

Other supervisors