PhD Study : Advanced Multifunctional Energy Efficient Building Facades

Apply and key information  

Summary

Glass facades form the interface between the internal and external climate and act as a key modulator between these two environments. They are therefore crucial in providing not only protection from the external environment but also comfort for the building occupants. However, more significantly their role has become one of energy control and can potentially have a substantial influence on the energy demand and consequently carbon emissions of buildings. They are therefore seen as a critical building fabric element in the retrofitting of existing building stock or the delivery of new nearly zero energy buildings (nZEB).

Recent advances have seen façade and window technologies which act as smart multifunction glazed components bringing together a range of properties such as excellent thermal insulation, energy harvesting and light transmission and control. Traditional multi-pane insulating glazing systems, which use inert gases, warm edge spacers and low emissivity coatings have reached the limits achievable for thermal insulation performance. Further improvements have been shown to be achievable with the development of a Vacuum Insulated Glazing using a narrow evacuated cavity between the glass panes to minimise heat transmission.

However, their wide-scale deployment is hindered due to the requirements of a hermetic and durable edge seal. Key issues to be addressed include the ability of the seal to withstand stresses due to large temperature differentials between the indoor and outdoor environments and those imposed by atmospheric pressure acting on the glass panes or due to other significant impacts. Additionally, a low temperature seal design is required which is below the thermal tolerances of tempered glass, now mandatory for many building applications. Other areas which require development include a suitable support pillar used to maintain separation of the glass panes under atmospheric pressure.

The addition of further glass panes may also be investigated. Additional functionality of the vacuum insulated glazing which may be considered to include the use novel materials or coatings for light/energy control or the integration of suitable solar technologies for energy harvesting.

The proposed glazing systems should have applications for a range of climates and be applicable for both new and existing buildings including those where the architectural merit of the building must be maintained.  Areas such as weight reduction, ease of installation and integration (particularly for building retrofitting), and light transmission while meeting the building standards and conservation considerations for heritage buildings are essential considerations for new products and systems. The developed glazing/façade system performance will be fully characterised using hot box calorimetry with the potential evaluation under real environmental conditions through inclusion in demonstration test sites in Europe.

Essential criteria

Applicants should hold, or expect to obtain, a First or Upper Second Class Honours Degree in a subject relevant to the proposed area of study.

We may also consider applications from those who hold equivalent qualifications, for example, a Lower Second Class Honours Degree plus a Master’s Degree with Distinction.

In exceptional circumstances, the University may consider a portfolio of evidence from applicants who have appropriate professional experience which is equivalent to the learning outcomes of an Honours degree in lieu of academic qualifications.

  • Clearly defined research proposal detailing background, research questions, aims and methodology

Funding and eligibility

The University offers the following levels of support:

Vice Chancellors Research Studentship (VCRS)

The following scholarship options are available to applicants worldwide:

  • Full Award: (full-time tuition fees + £19,000 (tbc))
  • Part Award: (full-time tuition fees + £9,500)
  • Fees Only Award: (full-time tuition fees)

These scholarships will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance) and will provide a £900 per annum research training support grant (RTSG) to help support the PhD researcher.

Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Please note: you will automatically be entered into the competition for the Full Award, unless you state otherwise in your application.

Department for the Economy (DFE)

The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £19,000 (tbc) per annum for three years (subject to satisfactory academic performance).

This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

  • Candidates with pre-settled or settled status under the EU Settlement Scheme, who also satisfy a three year residency requirement in the UK prior to the start of the course for which a Studentship is held MAY receive a Studentship covering fees and maintenance.
  • Republic of Ireland (ROI) nationals who satisfy three years’ residency in the UK prior to the start of the course MAY receive a Studentship covering fees and maintenance (ROI nationals don’t need to have pre-settled or settled status under the EU Settlement Scheme to qualify).
  • Other non-ROI EU applicants are ‘International’ are not eligible for this source of funding.
  • Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Due consideration should be given to financing your studies. Further information on cost of living

The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 18 February 2019
12:00AM

Interview Date
13 March to 21 March 2019

Preferred student start date
September 2019

Applying

Apply Online  

Contact supervisor

Dr Trevor Hyde

Other supervisors