PhD Study : Development of multi-scale and multi-physics computational framework for the assessment of long-term performance of 3D-textile composites structures

Apply and key information  

Summary

The purpose of this project is to develop a finite element software for the simulation of long-term structural performance of 3D-textile composites. These composites provide weaving of near-net-shape, high through-thickness mechanical properties and improved impact and delamination resistance. During their service lives, these composites are exposed to harsh environmental conditions in addition to mechanical loading leading to degradation in their mechanical properties and reduced structural performance. The macro or structural level properties of these materials are rooted in their underlying heterogeneous micro-structures, consisting of 3D arrangements of yarns in a polymer matrix. Therefore, a fully coupled multi-scale and multi-physics modelling provides an accurate computational framework for the simulation of their long-term performance.

A realistic and detailed micro-level geometry modelling of the 3D-textile composites is very challenging. Therefore, a fully automated and robust framework will be developed for the micro-level geometry modelling. This model will be used subsequently in a multi-scale finite element analysis, where mechanical properties required for the macro/structural-level simulation will be derived directly from the mechanics of this micro-level geometry. Two dominant damage mechanisms, i.e. matrix elasto-plasticity and fiber-matrix decohesion will next be incorporated in the model. The already developed multi-scale computational framework will be extended to incorporate multi-physics effects, i.e. hygro-thermal ageing in this case. Both diffusion and capillary suction will be used to model the moisture transport, while conduction will be used for the heat transfer simulation. A hygro-thermal ageing model, representing the degradation of mechanical properties over time for a given exposure temperature and moisture concentration will be developed next.

The final stage of the PhD project will be to combine all of the above-mentioned models into a single fully coupled multi-scale and multi-physics computational framework. The developed framework will be implemented in MOFEM (Mesh Oriented Finite Element Method), an open-source C++ based finite element software, developed and maintained at the University of Ulster and University of Glasgow. State of the art computational procedures including high-performance computing and adaptive analysis will be used to enhance the computational efficiency of the developed finite element software. Finally, the developed code will be used to solve problems from a variety of fields including aerospace, marine, automotive, construction and wind energy.

The proposed project requires very limited resources and will make use of only open-source and freely available tools. These developments are not available in commercial finite element software packages but are vital for design and analysis real-world composite structures. The generalised implementation will allow to use the software for other composites consisting of unidirectional and 2D-textile reinforcement. The PhD student will be benefited directly from the expertise of Engineering Composites Research Centre at the University of Ulster and MOFEM development team at the University of Glasgow.

Essential criteria

Applicants should hold, or expect to obtain, a First or Upper Second Class Honours Degree in a subject relevant to the proposed area of study.

We may also consider applications from those who hold equivalent qualifications, for example, a Lower Second Class Honours Degree plus a Master’s Degree with Distinction.

In exceptional circumstances, the University may consider a portfolio of evidence from applicants who have appropriate professional experience which is equivalent to the learning outcomes of an Honours degree in lieu of academic qualifications.

Funding and eligibility

The University offers the following levels of support:

Vice Chancellors Research Studentship (VCRS)

The following scholarship options are available to applicants worldwide:

  • Full Award: (full-time tuition fees + £19,000 (tbc))
  • Part Award: (full-time tuition fees + £9,500)
  • Fees Only Award: (full-time tuition fees)

These scholarships will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance) and will provide a £900 per annum research training support grant (RTSG) to help support the PhD researcher.

Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Please note: you will automatically be entered into the competition for the Full Award, unless you state otherwise in your application.

Department for the Economy (DFE)

The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £19,000 (tbc) per annum for three years (subject to satisfactory academic performance).

This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

  • Candidates with pre-settled or settled status under the EU Settlement Scheme, who also satisfy a three year residency requirement in the UK prior to the start of the course for which a Studentship is held MAY receive a Studentship covering fees and maintenance.
  • Republic of Ireland (ROI) nationals who satisfy three years’ residency in the UK prior to the start of the course MAY receive a Studentship covering fees and maintenance (ROI nationals don’t need to have pre-settled or settled status under the EU Settlement Scheme to qualify).
  • Other non-ROI EU applicants are ‘International’ are not eligible for this source of funding.
  • Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Due consideration should be given to financing your studies. Further information on cost of living

The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 19 February 2018
12:00AM

Interview Date
Mid March 2018

Preferred student start date
Mid September 2018

Applying

Apply Online  

Other supervisors