This opportunity is now closed.

Funded PhD Opportunity

An Investigation into the role of Transforming Growth Factor-beta induced protein in corneal homeostasis and wound healing.

Subject: Biomedical Sciences


Summary

Background to the project: When the clear window at the front of the eye, known as the cornea, is damaged by injury or disease (including hereditary genetic disease), it can become less transparent causing loss of sight and, at times, blindness. If the cornea becomes too damaged the only treatment available is a corneal transplant from a donor eye. Mutations in the transforming growth factor beta-induced (TGFBI) gene cause a group of inherited corneal dystrophies. Mutant TGFBI protein accumulates as opaque deposits in the extracellular matrix of the stroma and epithelium of the cornea affecting vision. Accidental injury or laser eye surgery accelerates the formation of these deposits; however, the exact molecular disease mechanisms remain unknown.

Methods to be used: The successful candidate will conduct cutting-edge research in state-of-the art facilities and gain wide experience in a variety of cell and molecular biology techniques. Samples from patients with and without corneal disease and established mouse models of corneal disease are already available. The student will join a group with both national and international collaborations that will allow pursuit of research towards the prevention of this debilitating disease.

Objectives of the Research: TGFBI protein expression increases in epithelial and stromal corneal cells near the wound in injured normal cornea. In preliminary experiments, we have shown that inhibition of TGFBI expression slows tissue regeneration in a zebrafish model. This project aims to test the hypothesis that normal TGFBI protein is necessary for the wound healing process in the cornea. CRISPR/Cas9 is a bacterial enzyme that can be used for genome engineering. We propose to use CRISPR/Cas9 to obtain TGFBI-null corneal cell lines and study responses to injury. We have shown that it is possible to use CRISPR/Cas9 to knockout gene expression in mouse cornea and this project will investigate the wound healing response of corneas deficient in TGFBI. This project aims to test the ability of CRISPR/Cas9 to prevent the development of corneal disease using a mouse model which has been genetically engineered to develop TGFBI corneal dystrophy.

Skills required of applicant: The applicant should have experience of undertaking a research project, good communication and organisational skills, experience of effective team working and an ability and willingness to learn new skills and techniques, undertake scientific writing and to travel.

Applications are welcomed from both medical and non-medical graduates.

References:

1.Christie KA et al. 2017. Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders. Sci Rep Nov 22; 7(1):16174. doi:10.1038/s41598-017-16279-4

2.Chao-Shern C et al. 2017. Post-LASIK exacerbation of granular corneal dystrophy type 2 in members of a Chinese family. Eye in press

3.Courtney DG, et al. 2016. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting. Gene Ther 23:108

4.Courtney DG, et al. 2015. Protein Composition of TGFBI-R124C- and TGFBI-R555W-Associated Aggregates Suggests Multiple Mechanisms Leading to Lattice and Granular Corneal Dystrophy. IOVS 56:4653.

5.Courtney DG, et al. 2014. Development of allele-specific gene-silencing siRNAs for TGFBI Arg124Cys in lattice corneal dystrophy type I. IOVS 55:977.


Essential criteria

  • Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC)
  • Sound understanding of subject area as evidenced by a comprehensive research proposal
  • A comprehensive and articulate personal statement

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • First Class Honours (1st) Degree
  • Masters at 65%
  • Completion of Masters at a level equivalent to commendation or distinction at Ulster
  • Research project completion within taught Masters degree or MRES
  • Experience using research methods or other approaches relevant to the subject domain
  • Work experience relevant to the proposed project
  • Publications - peer-reviewed
  • Experience of presentation of research findings

Funding

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Vice Chancellors Research Studentship (VCRS)

    Full award (full-time PhD fees + DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £15,000 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Bursary (VCRB)

    Part award (full-time PhD fees + 50% DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £7,500 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Fees Bursary (VCRFB)

    Fees only award (PhD fees + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University


Reviews

My experience has been great and the people that I have worked with have been amazing

Kieran O'Donnell - 3D printing of biological cells for tissue engineering applications

Watch Video  

Completing the MRes provided me with a lot of different skills, particularly in research methods and lab skills.

Michelle Clements Clements - MRes - Life and Health Sciences

Watch Video  

Throughout my PhD I’ve been provided with continuous support and guidance by my supervisors and the staff at the University.I’ve also received many opportunities to further enhance my professional development in the form of teaching experience and presenting my work at conferences which will aid in my pursuit of a career in academia or industry.

William Crowe


Key dates

Submission deadline
Monday 19 February 2018

Interview Date
6, 7 and 8 March 2018


Applying

Apply Online  


Contact supervisor

Dr Andrew Nesbit


Other supervisors

Related Funded Opportunities

Diabetes

Subject: Biomedical Sciences

 View details

Genomic Medicine

Subject: Biomedical Sciences

 View details

The regulation of rhamnolipid biosynthesis in Burkholderia thailandensis.

Closing date:
Tuesday 1 September 2020
Subject: Biomedical Sciences

 View details

Stratified Medicine

Subject: Biomedical Sciences

 View details

Optometry and Vision Science

Subject: Biomedical Sciences

 View details

MRes in Biomedical Sciences

Subject: Biomedical Sciences

 View details

The production of rhamnolipid biosurfactant by Pseudomonas aeruginosa growing in biofilms.

Closing date:
Tuesday 1 September 2020
Subject: Biomedical Sciences

 View details

Molecular Pathology of Glaucoma

Closing date:
Wednesday 1 January 2020
Subject: Biomedical Sciences

 View details

The design and analysis of a novel photo-activated antimicrobial system

Closing date:
Tuesday 1 September 2020
Subject: Biomedical Sciences

 View details