Manufacturing Management - PgDip, MSc

2024/25 Part-time Postgraduate course

Award:

Postgraduate Diploma, Master of Science

Faculty:

Faculty of Computing, Engineering and the Built Environment

School:

School of Engineering

Campus:

Belfast campus

Start dates:

September 2024

January 2025

Overview

The course enables candidates to develop a comprehensive knowledge and understanding of key scientific principles, theories and practice.

Summary

The programme has been designed to provide postgraduate education and training in Manufacturing Management. The course includes modules in topics such as Computer Aided Engineering, Quality and Manufacturing Systems. A significant proportion of the students on the course come from local engineering companies and study in a part-time mode. Both the MSc and PgDIP versions of the course are also suitable for engineering or science graduates wishing to up skill in order to improve their employment prospects.

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.

About this course

About

The course draws upon the internationally recognised research within the school in areas such as Aerospace Composites, Polymers, Advanced Metal Forming, Medical Devices, Biomedical Engineering, and Nanotechnology. Such research within the school has led to several successful spinout companies. Staff teaching on the course also have a wealth of industrial experience with many have decades of experience working with a wide range of companies. The following represent some of the available taught modules: Core modules, Manufacturing Systems, Computer Aided Engineering for Engineers, Quality Improvement A wide range of optional modules are available which allow students to tailor the course to their interests or employment.

Students can study the following modules;

This module considers modern approaches to Quality Improvement. The context of product or service is set for the interpretation of Quality from different perspectives. The Quality topics are considered under the themes of definition, measurement, actions, improvement and control. Modern and traditional management approaches are evaluated and techniques appropriate to product or service characteristics and organisation performance are considered.

Computer Aided Engineering for Managers

This module provides a concise and application based overview of current computer aided engineering systems by providing a detailed summary of current rapid-prototyping and manufacturing processes, multi-axis advanced manufacturing technologies, digital inspection and simulation. The application of CAE to enhance the product lifecycle will be the fundamental objective of this module. The integration of these systems from new product introduction (NPI) through to digital inspection will be addressed.

Masters Dissertation

This module is designed to enable students to develop and demonstrate the appropriate research and project management skills needed to complete a Masters level dissertation.

Biomaterials 1

This module is optional

This module provides the student with the core skills required to critically appraise the composition, properties and function of synthetic biomaterials in the context of the relevant materials science considerations. Issues relating to the regulation of biomaterials, as used in relevant medical devices and the implications of the relevant FDA (USA) and Medical Device Directives (EU) legislation are also covered. Students will also develop skills to enable them to provide a considered opinion regarding the choice of biomaterials for specific clinical applications by considering a number of case studies.

Tissue Engineering

This module is optional

This module provides the student with the skills required to critically appraise the composition, properties and function of tissue engineered products within the context of the relevant biological and materials science considerations. Issues relating to the ethics and regulation of tissue engineering and the implications of the relevant FDA (USA) and Medical Device Directives (EU) legislation are also covered. Students will also develop skills to enable them to provide a considered opinion regarding the choice of scaffolds, cells, stimulatory factors and bioreactor environment for specific applications by considering a number of case studies.

Embedded Systems RTOS Design

This module is optional

This module enables the student to design and implement cost-effective reliable real-time embedded systems that can be shown to meet the current industry performance, reliability and safety standards.

Digital Signal Processing

This module is optional

This module enables the student to understand, design apply and evaluate digital signal processing algorithms.

Nanoscale Analysis & Metrology

This module is optional

This module focuses on nano and micro-scale analysis and metrology. The principle of operation and limitation of each technique are explained, the applications to the nanotechnology arena are described.

Work based learning 1

This module is optional

A Work Based Learning module is defined as a period of work based learning, normally of not less than 150 hours, supervised by a member of academic staff of the University. Part-time students working as professionals in industry are often required to do work which is academically challenging. As a result they frequently gain knowledge, techniques and skills, and acquire expertise, which is equivalent to work at post-graduate level. This module is designed to provide a framework within which such personal development and achievement can be recognised by the award of academic credit.

Finite Element Analysis and Computational Fluid Dynamics

This module is optional

An introduction to continuum modelling approaches will enable students to understand the concepts and applications of finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) modles. Specific skills will be developed using commercially available software in both FEA and CFD.An introduction to continuum modelling approaches will enable students to understand the concepts and applications of finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) modles. Specific skills will be developed using commercially available software in both FEA and CFD.

Research Project (Part 1)

This module is optional

The Research Based Learning module is defined as a period of project work within a research environment, normally of not less than 150 hours, supervised by a member of academic staff of the University. It is designed to inculcate a spirit of critical enquiry coupled with a rigorous academic approach to problem solving in research and enhance the personal, managerial, commercial and technical capabilities of the student. For MSc students this is one of three consecutive research modules, in Research Project 1 the projects are allocated, literature review is undertaken, some initial training/testing is completed and the students develop a plan for the remaining modules. In Research Project 2 the students undertaken a defined piece of work which they then write up in the form of a publication report. The prior literature review, training and practical work completed in Research Project 1&2 will enable the students to make good early progress in their final dissertation (MEC868).

Research Project (Part 2)

This module is optional

A Work Based Learning module is defined as a period of work based learning, normally of not less than 150 hours, supervised by a member of academic staff of the University. Part-time students working as professionals in industry are often involved in work which is entrepreneurial in nature. As a result they frequently gain knowledge, techniques and skills, and acquire expertise, which is equivalent to work at post-graduate level. This module is designed to provide a framework within which such personal development and achievement can be recognised by the award of academic credit.

Polymer Technology

This module is optional

At the end of the module the student should be able to critically appraise alternative thermoplastic conversion and fabrication processing routes. Through analysis of processing behaviour, they should be capable of developing appropriate strategy for selection of conversion routes for a range of representative material systems and applications in terms of total economics and quality enhancement.

Composite Engineering

This module is optional

At the end of the module the student should have acquired a high level of competence the many facets of composite materials and their processing methods leading to an active role as a member of a Production Management or Research team. The student should have the ability to select between competing 'composite' technologies for specific applications and hence be in a position to devise conversion systems and associated quality assurance procedures, having regard to maximising cost effectiveness and product reliability.

Process Product Optimisation

This module is optional

At the end of the module the student should be capable of critically assessing the complete polymer or composite system. Using modelling and analysis techniques, they should be capable of designing the complete system to meet a specific performance requirement, thus removing much of the trial and error from the practice.

Mechanics of Sheet Metal Forming

This module is optional

An introduction to the theory of engineering plasticity applied to common sheet metal forming processes. The relevant theories are presented and their application to real industrial processes are emphasised.

Research Methods & Facilities

The module proves the underpinnings in research methods required to design and conduct original postgraduate level research programmes. in addition the module aims to develop in-depth knowledge and advanced expertise in the use of specific advanced research facilties.

Manufacturing systems

This module provides a concise review of modern manufacturing, time compression methodologies and current manufacturing systems - their specification, implementation and development. The flow of data within a product lifecycle is analysed from design through to manufacture and the effective utilisation of advanced manufacturing technology addressed.

Bioinstrumentation

This module is optional

This research led module provides students with the necessary skills to understand and develop medical engineering devices, providing context and knowledge of the clinical need, details of underpinning hardware/software platforms and regulatory procedures governing implementation.

Micro- & Nano-Scale Devices

This module is optional

The course provides an in depth knowledge of micro and nanofabrication techniques using elements from surface science, nanoscience and nanotechnology, plasmas and thin films, biosensors, tissue engineering and biomaterials.

Entrepreneurship (Engineering)

This module is optional

In this module students are engaged in applying their knowledge of entrepreneurship and the entrepreneurial process in resolving some of the practical problems inherent in enterprise development and new venture creation.

Work based learning 2

This module is optional

A Work Based Learning module is defined as a period of work based learning, normally of not less than 150 hours, supervised by a member of academic staff of the University. Part-time students working as professionals in industry are often required to do work which is academically challenging. As a result they frequently gain knowledge, techniques and skills, and acquire expertise, which is equivalent to work at post-graduate level. This module is designed to provide a framework within which such personal development and achievement can be recognised by the award of academic credit.

Attendance

Full-time students take four modules per semester for semesters 1 and 2 and then undertake the dissertation during the summer. Part-time students generally take two modules per semester but this can be altered as required. Part-time students attend one day per week during term time and some of the modules run in the evening.

MSc part time is 2 years taught at about 3-4 hours a week for the two 12 week terms plus your dissertation.

Start dates

  • September 2024
  • January 2025

Teaching, Learning and Assessment

The course is delivered through lectures, tutorials and laboratory classes and is supported with extensive online content. The small class sizes provide an excellent learning environment and the material is assessed thorough formal examinations, coursework, class tests and presentations.

Teaching, learning and assessment

The content for each course is summarised on the relevant course page, along with an overview of the modules that make up the course.

Each course is approved by the University and meets the expectations of:

Attendance and Independent Study

As part of your course induction, you will be provided with details of the organisation and management of the course, including attendance and assessment requirements - usually in the form of a timetable. For full-time courses, the precise timetable for each semester is not confirmed until close to the start date and may be subject to some change in the early weeks as all courses settle into their planned patterns. For part-time courses which require attendance on particular days and times, an expectation of the days and periods of attendance will be included in the letter of offer. A course handbook is also made available.

Courses comprise modules for which the notional effort involved is indicated by its credit rating. Each credit point represents 10 hours of student effort. Undergraduate courses typically contain 10, 20, or 40 credit modules (more usually 20) and postgraduate courses typically 15 or 30 credit modules.

The normal study load expectation for an undergraduate full-time course of study in the standard academic year is 120 credit points. This amounts to around 36-42 hours of expected teaching and learning per week, inclusive of attendance requirements for lectures, seminars, tutorials, practical work, fieldwork or other scheduled classes, private study, and assessment. Teaching and learning activities will be in-person and/or online depending on the nature of the course. Part-time study load is the same as full-time pro-rata, with each credit point representing 10 hours of student effort.

Postgraduate Master’s courses typically comprise 180 credits, taken in three semesters when studied full-time. A Postgraduate Certificate (PGCert) comprises 60 credits and can usually be completed on a part-time basis in one year. A 120-credit Postgraduate Diploma (PGDip) can usually be completed on a part-time basis in two years.

Class contact times vary by course and type of module. Typically, for a module predominantly delivered through lectures you can expect at least 3 contact hours per week (lectures/seminars/tutorials). Laboratory classes often require a greater intensity of attendance in blocks. Some modules may combine lecture and laboratory. The precise model will depend on the course you apply for and may be subject to change from year to year for quality or enhancement reasons. Prospective students will be consulted about any significant changes.

Assessment

Assessment methods vary and are defined explicitly in each module. Assessment can be a combination of examination and coursework but may also be only one of these methods. Assessment is designed to assess your achievement of the module’s stated learning outcomes.  You can expect to receive timely feedback on all coursework assessments. This feedback may be issued individually and/or issued to the group and you will be encouraged to act on this feedback for your own development.

Coursework can take many forms, for example: essay, report, seminar paper, test, presentation, dissertation, design, artefacts, portfolio, journal, group work. The precise form and combination of assessment will depend on the course you apply for and the module. Details will be made available in advance through induction, the course handbook, the module specification, the assessment timetable and the assessment brief. The details are subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.

Normally, a module will have 4 learning outcomes, and no more than 2 items of assessment. An item of assessment can comprise more than one task. The notional workload and the equivalence across types of assessment is standardised. The module pass mark for undergraduate courses is 40%. The module pass mark for postgraduate courses is 50%.

Calculation of the Final Award

The class of Honours awarded in Bachelor’s degrees is usually determined by calculation of an aggregate mark based on performance across the modules at Levels 5 and 6, (which correspond to the second and third year of full-time attendance).

Level 6 modules contribute 70% of the aggregate mark and Level 5 contributes 30% to the calculation of the class of the award. Classification of integrated Master’s degrees with Honours include a Level 7 component. The calculation in this case is: 50% Level 7, 30% Level 6, 20% Level 5. At least half the Level 5 modules must be studied at the University for Level 5 to be included in the calculation of the class.

All other qualifications have an overall grade determined by results in modules from the final level of study. In Master’s degrees of more than 200 credit points the final 120 points usually determine the overall grading.

Figures correct for academic year 2022-2023.

Academic profile

The University employs over 1,000 suitably qualified and experienced academic staff - 60% have PhDs in their subject field and many have professional body recognition.

Courses are taught by staff who are Professors (19%), Readers, Senior Lecturers (22%) or Lecturers (57%).

We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic and learning support staff (85%) are recognised as fellows of the Higher Education Academy (HEA) by Advance HE - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.

The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise.  The precise staffing for a course will depend on the department(s) involved and the availability and management of staff.  This is subject to change annually and is confirmed in the timetable issued at the start of the course.

Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.

Figures correct for academic year 2022-2023.

Belfast campus

Accommodation

High quality apartment living in Belfast city centre adjacent to the university campus.

Find out more - information about accommodation (Opens in a new window)  


Student Wellbeing

At Student Wellbeing we provide many services to help students through their time at Ulster University.

Find out more - information about student wellbeing (Opens in a new window)  

Standard entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

Entry Requirements

PgDip - Normally, an Honours or non-Honours degree or postgraduate diploma/certificate in a relevant engineering, technology or science discipline. In exceptional circumstances, where an individual has substantial and significant working/industrial experience, a portfolio of written evidence may be considered as an alternative entrance route. It is possible to transfer onto the MSc version of the course after successfully completing the PGDip.

MSc - Specific details on the admission criteria can be found at the course webpage provided below. Normally, a second class honours degree or better in a relevant engineering, science, physics or technology discipline. Or a postgraduate diploma/certificate in a relevant engineering or technology discipline. In exceptional circumstances, where an individual has substantial and significant working/industrial experience, a portfolio of written evidence may be considered as an alternative entrance route.

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Exemptions and transferability

Students can apply for exemptions for specific modules based on prior learning.

Careers & opportunities

Career options

Upon successful completion of the programme students will be more employable within a wide range of manufacturing industries. The wide range of optional modules available in areas such as Biomedical Engineering, Nanotechnology, Aerospace and Materials allows students to tailor the course towards their particular interests. Another important opportunity for MSc students is the academic/research career through a PhD programme such as those offered in the Engineering Research Institute (ERI) which hosts the MSc programme.

Work placement / study abroad

Part-time students can undertake work based learning modules.

Professional recognition

Institution of Engineering and Technology (IET)

Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Institution of Mechanical Engineers (IMechE)

Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Apply

Start dates

  • September 2024
  • January 2025

Fees and funding

2024/25 Fees

Our postgraduate fees are subject to annual increase and are currently under review.

See our tuition fees page for the current fees for 2023/24 entry.

Additional mandatory costs

It is important to remember that costs associated with accommodation, travel (including car parking charges) and normal living will need to be covered in addition to tuition fees.

Where a course has additional mandatory expenses (in addition to tuition fees) we make every effort to highlight them above. We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals, as well as first-class facilities and IT equipment. Computer suites and free Wi-Fi are also available on each of the campuses.

There are additional fees for graduation ceremonies, examination resits and library fines.

Students choosing a period of paid work placement or study abroad as a part of their course should be aware that there may be additional travel and living costs, as well as tuition fees.

See the tuition fees on our student guide for most up to date costs.

Contact

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.


For more information visit

Disclaimer

  1. Although reasonable steps are taken to provide the programmes and services described, the University cannot guarantee the provision of any course or facility and the University may make variations to the contents or methods of delivery of courses, discontinue, merge or combine courses and introduce new courses if such action is reasonably considered to be necessary by the University. Such circumstances include (but are not limited to) industrial action, lack of demand, departure of key staff, changes in legislation or government policy including changes, if any, resulting from the UK departing the European Union, withdrawal or reduction of funding or other circumstances beyond the University’s reasonable control.
  1. If the University discontinues any courses, it will use its best endeavours to provide a suitable alternative course. In addition, courses may change during the course of study and in such circumstances the University will normally undertake a consultation process prior to any such changes being introduced and seek to ensure that no student is unreasonably prejudiced as a consequence of any such change.
  1. The University does not accept responsibility (other than through the negligence of the University, its staff or agents), for the consequences of any modification or cancellation of any course, or part of a course, offered by the University but will take into consideration the effects on individual students and seek to minimise the impact of such effects where reasonably practicable.
  1. The University cannot accept any liability for disruption to its provision of educational or other services caused by circumstances beyond its control, but the University will take all reasonable steps to minimise the resultant disruption to such services.