Computer Science

MSc

2023/24 Part-time Postgraduate course

Award:

Master of Science

Faculty:

Faculty of Computing, Engineering and the Built Environment

School:

School of Computing

Campus:

Belfast campus

Start date:

September 2023

This course is now closed for International applications for September 2023

Overview

Creating the next generation of high-quality professionals for the Computer Science industry.

The University regularly ‘refreshes’ courses to make sure they are as up-to-date as possible.

In addition it undertakes formal periodic review of courses in a process called 'revalidation’ to ensure that they continue to meet standards and are current and relevant.

This course will be revalidated in the near future and it is possible that there will be some changes to the course as described in this prospectus.

Summary

“Computer scientists understand the underlying principles of programming and algorithms and use them to design software, systems and networks to meet the needs of clients and the public. It is a fast-moving, highly specialised field and there is a constant, high demand for talented computer science graduates.” —TimesHigher

The MSc Computer Science is a specialist programme that has the core aim of preparing students for both an industrial career, equipped with a comprehensive understanding of the advanced concepts, paradigms, algorithms, theories and techniques underpinning advanced computing systems, in addition to providing a relevant platform to embark on further research studies. The course covers leading-edge subjects in areas of Advanced Computer Science, Artificial Intelligence and Internet of Things.

Further motivated by evidence of demand from industry and business for upskilling of staff in the areas of Computer Science, The new MSc in Computer Science will strive to address the growing demands in the sector by training a new kind of Computing specialist who is able to both manage data, understand business process and implement solutions subsequently interconnecting them as part of a larger system.

The delivery of the course is supported by multi-million pound infrastructure of a large-scale pervasive and mobile computing environment, a suite of contemporary sensing technologies and rapid prototyping facilities. The course content has been informed by internationally leading research being conducted in the School and by our strong industry partnerships, most notably with BT through the BT Ireland Innovation Centre (BTIIC) and with PwC through the Advanced Research and Engineering Centre (ARC).

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.

About this course

About

The MSc award consists of two compulsory taught modules (totaling 40 credits), four optional taught modules (totaling 80 credits) from a wide range of topics, in addition to a substantial piece of independent Masters Project (60 credits).

The two compulsory modules are:

Scalable Advanced Software Solutions

This module aims to explore a range of modern development and deployment concepts in the context of scalable and high-performance computing services. Within this module concepts such as containerisation, Continuous Integration, Continuous Delivery, cloud architectures, scalable solutions and infrastructure will be explored. Additionally, advanced programming/development concepts facilitating high performance solution development will be examined.

Data Science and Machine Learning

This module provides an overview of Data Science process/pipeline. It provides systematic understanding of mathematical and statistical knowledge for explorable data analysis (EDA) and to understand the foundations of supervised and unsupervised machine learning algorithms, and with the practical programming skills to apply them to real world datasets. The module discusses the constraints that needs to be considered when designing, implementing, evaluating and visualising solutions to real-world complex problems.

Optional modules are

Cyber Security

Cyber security, which has an impact on national security, infrastructure, and the global economy, is one of today's most pressing issues. Due to the enormous digital threat, cyber security knowledge is among the most in-demand globally. This course examines recent advancements in cyber security theory and practice. To enable critical cyber security decision-making, the students will develop the fundamental and advanced aspects of cyber security in terms of theory, practice, policy, and security standards. They will also learn about the threats to current and emerging systems and networks and how to effectively counter them in accordance with information security management standards. The students will learn about the social, legal, and ethical issues surrounding cyber security.

Deep Learning and Its Application

The module will introduce the fundamentals of deep learning, construction of neural networks and theory of developing successful deep learning algorithms. Students will learn state of the art convolutional neural networks, recurrent neural networks, loss functions and optimisation process along with development tools, and apply them to develop solutions for applications of computer vision and natural language processing.

Digital Transformation

This module aims to provide students with an understanding of digital transformation in a range of organisational contexts. On successful completion of the module, a student will be able to: assess how digital technologies can disrupt industries by transforming industry value chains, patterns of demand and competitive pressures; understand how digital technologies and frameworks can be applied in a digital transformation strategy; understand the organisational and people capabilities required to support and implement a digital transformation strategy; and critically evaluate current practice and theory on digital transformation.

Big Data and Infrastructure

Within this module a variety of database and data storage paradigms will be explored, ranging from more traditional relational systems to NoSql and object stores, time series databases, semantic store and graph stores. Consideration will be given to big data and the problem with storing and querying high volumes of highly variable data which is stored and processed at a high speed. The cloud computing paradigm will also be introduced and how to avail of its power and resources. The core concepts of distributed computing will be examined in the context of a data lake. Students will be taught, practically and theoretically, about the components of Data lakes, workflows, functional programming concepts, use of MapReduce, Spark, Pig, and Hive.

IoT Networks and Protocols

The Internet of Things (IoT) describes the interconnectivity of uniquely identifiable devices embedded in the environment through internet protocols and infrastructure. The module will evaluate and critically appraise IoT networking concepts, models, standards, protocols and practical skills. It will address Sustainability Development Goals, inform on the evolving IoT use cases, and appraise related issues such as the impact of IoT on a citizen’s privacy.

Software Product Management

A software product manager is responsible for the market success of a software product by controlling the development of business strategy, coordinating with developers, marketers, and customers, and managing analytics and continuous improvement. This module identifies the stages in the product management lifecycle and equips students from a technical background with the skills to enter this increasingly important field.

Robotics & AI

This module provides an overview of smart robotics and AI. It is designed to provide students with a strong foundation through the core topics and the key technologies of robotics and AI while providing hands-on experience on programming smart robots in the labs. The module will explore practically coding AI techniques for Robotics and the focus is given to design and implement smart robots exhibiting AI behaviours.

Pervasive Computing

The focus of this module is to provide an opportunity for students to gain an in-depth understanding of pervasive computing and to apply this understanding to a range of application domains through developing specific solutions for selected application case studies. The module surveys emerging hardware and software components associated with Pervasive Computing Systems, examining the technical and societal issues concerned with a pervasive infrastructure, wireless networks, protocols and emergent algorithms. In doing so a number of examples of innovative systems and applications are reviewed. The module includes a strong practical element where students will be asked to develop services providing support for wearable and smart home context-aware solutions.

Knowledge Engineering

This module will cover modern topics in a classical field of artificial intelligence, including knowledge representation and reasoning (deductive and inductive), and their effective utilisation in e.g. decision making, automated reasoning and formal verification, and semantic web. Students will gain deep understanding of key concepts and principles, and gain practical skills in critically evaluating and effectively building knowledge-based applications.

Intelligence Engineering and Infrastructure

The aim of this module is to educate students on best practices for engineering, deploying, testing and orchestration intelligence across modern computing. This will include aspects of Machine learning, federated operation of activities, data engineering, production of tailored computational artefacts (such as models which are tailored for a range of device type), production pipelines, automated testing and automated deployment.

Emerging and Advanced Topics in AI

This module will cover cutting-edge topics in the field of artificial intelligence, including recent advances in AI theory, algorithms and applications, as well as issues such as privacy, fairness and ethics in artificial intelligence. In doing so a number of examples of advanced AI systems and applications are reviewed. Students will gain deep understanding of key concepts, principles, and challenges, and gain practical skills in critically evaluating and effectively building AI-based applications. The module will also help students develop their skills in independent learning, research skills, writing, as well as practical skills in using software to reproduce results from the literature.

Embedded Systems and Sensors

An embedded system is an electronic or computer system which performs dedicated control and data access functions in electronics-based systems and applications. Embedded systems play crucial role in modern communications, automotive systems, consumer electronics and medical devices and will provide the foundation for the next generation of inclusive and sustainable, smart and connected Internet-of-Things (IoT) solutions. This module covers the most important aspects of the embedded systems and will provide a successful student with theoretical and practical knowledge on the feasibility, reliability, and security of electronic systems, especially those important for existing and future IoT applications.

Human Computer Interaction and UX research

This module allows students to gain knowledge about HCI and UX practices as well as the theory that supports these practices. This includes gaining experience in analysing UX related data and undertaking a literature review of a user interface technology whilst also considering a novel application for this technology.

Note: The university regularly refreshes courses to make sure they are as up-to-date as possible. This process is called revalidation. The School of Computing postgraduate courses are currently being revalidated and there are a number of proposed changes to each programme on the course regulation, course content and structure. These proposed changes are subject to final approval.

Attendance

Typically 5-10 timetabled hours per week Monday – Friday including lectures, tutorials and practicals in the computer labs for the taught components of the course. Research Project takes place in the final semester(s) seperately.

Start dates

  • September 2023

Teaching, Learning and Assessment

Teaching is delivered through lectures, directed tutorials, seminars, and practical sessions, some of which are by industry professionals / researchers.

The course is assessed by 100% coursework.

Academic profile

We have a highly experienced and energetic course team, in terms of both teaching and research. All members of the course team are research active and will be included in the forthcoming REF2021 submission. The course team have been grantholders of multi-million pound research projects, they have produced world-leading and internationally excellent research outputs in the area and have demonstrated research impact from their endeavours. We also fully embrace the importance of innovative teaching and assessment methods and are all Fellows of the Higher Education Academy in the UK.

The University employs over 1,000 suitably qualified and experienced academic staff - 59% have PhDs in their subject field and many have professional body recognition.

Courses are taught by staff who are Professors (25%), Readers, Senior Lecturers (20%) or Lecturers (55%).

We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic staff (81%) are accredited fellows of the Higher Education Academy (HEA) by Advanced HE - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.

The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise.  The precise staffing for a course will depend on the department(s) involved and the availability and management of staff.  This is subject to change annually and is confirmed in the timetable issued at the start of the course.

Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.

Figures correct for academic year 2021-2022.

Belfast campus

Accommodation

High quality apartment living in Belfast city centre adjacent to the university campus.

Find out more - information about accommodation  


Student Wellbeing

At Student Wellbeing we provide many services to help students through their time at Ulster University.

Find out more - information about student wellbeing  


Belfast Campus Location

The Belfast campus is situated in the artistic and cultural centre of the city, the Cathedral Quarter.

Find out more about our Belfast Campus.

Campus Address

Ulster University,
2-24 York Street,
Belfast
BT15 1AP

T: 02870 123 456

Standard entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

Entry Requirements

Applicants must:

(a) have gained

(i) a second class honours degree or better, in the subject areas of Computer Science, Software Engineering, Electronic Engineering, Electrical Engineering, Mathematics, Physics or closely related discipline, from a university of the United Kingdom or the Republic of Ireland, or from a recognised national awarding body, or from an institute of another country which had been recognised as being of an equivalent standard; or

(ii) an equivalent standard (normally 50%) in a Graduate Diploma, Graduate Certificate, Postgraduate Certificate or Postgraduate Diploma or an approved alternative qualification excluding Conversion courses; and the qualification must be in the subject areas of Computer Science, Software Engineering, Electronic Engineering, Electrical Engineering, Mathematics, Physics or closely related discipline;

and

(b) provide evidence of competence in written and spoken English (GCSE grade C or equivalent). For applicants whose first language is not English the minimum English language requirement is an Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III or equivalent English language tests comparable to IELTS equivalent score.

In exceptional circumstances, as an alternative to (a) (i) or (a) (ii) and/or (b), where an individual has substantial and significant experiential learning, a portfolio of written evidence demonstrating the meeting of graduate qualities (including subject-specific outcomes, as determined by the Course Committee) may be considered as an alternative entrance route. Evidence used to demonstrate graduate qualities may not be used for exemption against modules within the programme.

Note: School of Computing postgraduate courses are currently being revalidated and there are a number of proposed changes to each programme on the course regulation, course content and structure. These proposed changes are subject to final approval.

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Exemptions and transferability

The entry requirements facilitate accreditation of prior learning.

Careers & opportunities

Career options

Recent predictions from the US Department of Labor Bureau of Labor Statistics have indicated that the Computer and IT field will grow by 13% between the period 2016-2026. This is faster than the average rate of growth of all occupations. The MSc Computer Science specialist programme aims to provide postgraduate education and training in the area of Computer Science and its application to the needs of the industrial community. The course is designed to meet the demand for a new kind of Computing specialist who is able to both manage data, understand business process and implement solutions subsequently interconnecting them as part of a larger system. Graduates from the MSc Computer Science will be well placed to progress into a wide variety of careers, across a range of industrial settings and application domains. There are also opportunities for graduates from the MSc Computer Science to embark on further research by enrolling for PhD study affiliated with the research centres within the School of Computing. Computing related PhD studies in the areas of Pervasive Computing and Artificial Intelligence can be perused within the School of Computing.

Work placement / study abroad

There is no placement as part of the course, however, there are opportunities in the course for you to participate in research and industry related projects through our two Innovation centres BTIIC, CHIC and ARC.

BTIIC is the BT Ireland Innovation Centre (BTIIC) in collaboration with Ulster University and BT. The centre aims to invent new ways of using data analytics, artificial intelligence and the IoT, through two work streams of Intelligent System and IoT.

CHIC is the Connected Health Innovation Centre is funded by Invest NI to support business led research in the area of connected health, with focus on data analytics and IoT. The centre currently has over 30 national and international member companies with both technical expertise and clinical experience.

Advanced Research Centre (ARC) is a joint centre with PWC, Ulster and Queens University Belfast. ARC brings together researchers, engineers and business executives, combining expertise from academia and industry within one R&D centre and aims to downstream innovative research into commercial applications. Three technical work streams are established at Ulster on Digital Transparency, Digital Transformation and Digital Empowerment.

Apply

Start dates

  • September 2023

Fees and funding

Fees (total cost)

The price of your overall programme will be determined by the number of credit points that you initiate in the relevant academic year.

For modules commenced in the academic year 2023/24, the following fees apply:

Fees
Credit PointsNI/ROI/GB CostInternational Cost
5 £186.65 £440
10 £373.30 £880
15 £559.95 £1,320
20 £746.60 £1,760
30 £1,119.90 £2,640
60 £2,239.80 £5,280
120 £4,479.60 £10,560
180 £6,719.40 £15,840

NB: A standard full-time PGCert is equivalent to 60 credit points per year. A standard full-time PGDip is equivalent to 120 credit points per year.

Additional mandatory costs

It is important to remember that costs associated with accommodation, travel (including car parking charges) and normal living will need to be covered in addition to tuition fees.

Where a course has additional mandatory expenses (in addition to tuition fees) we make every effort to highlight them above. We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals, as well as first-class facilities and IT equipment. Computer suites and free Wi-Fi are also available on each of the campuses.

There are additional fees for graduation ceremonies, examination resits and library fines.

Students choosing a period of paid work placement or study abroad as a part of their course should be aware that there may be additional travel and living costs, as well as tuition fees.

See the tuition fees on our student guide for most up to date costs.

Contact

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.


For more information visit

Back to Top