Biomedical Engineering

PgDip

2023/24 Part-time Postgraduate course

Award:

Postgraduate Diploma

Faculty:

Faculty of Computing, Engineering and the Built Environment

School:

School of Engineering

Campus:

Belfast campus

Start date:

September 2023

This course is now closed for International applications for September 2023

Overview

The course is designed for students wanting to specialise in biomedical engineering, which is concerned with developing new medical technologies.

Summary

This course is a suitable preparation for employment in the medical device, pharma and biotechnology sectors and as preparation for PhD studies or research positions. The course draws upon the internationally recognised research with the school in areas such as Tissue Engineering, Bioceramics, Medical Electrodes and Drug Delivery. The course team also has a wealth of industrial experience and several medical device spin out companies have been established by the school.

The School of Engineering is in the top third of Engineering departments in the UK (Guardian 2017) and its research output is ranked in the UK top 20 (REF 2017). The course is based in internationally recognised NIBEC centre within the school which is the longest established Biomedical Research Centre in Ireland. The multi-million pound purpose-built facilities house some of the most sophisticated nano-fabrication, biological and characterisation equipment in the world. NIBEC is staffed by an internationally recognised and well experienced team of researchers and academics working predominantly at the interface of bioengineering and nanotechnology.

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.

About this course

About

The course is a suitable preparation for employment in the medical device sector and as preparation for PhD studies or research positions. The course draws upon the internationally recognised research with the school in areas such as Tissue Engineering, Medical Device Technology, Defibrillators, Bioceramics, Medical Electrodes and Drug Delivery. The course team also has a wealth of industrial experience and several medical device spin out companies have been established by the school.

Attendance

Full-time students take four modules per semester for semesters 1 and 2 with the course running from September to May. Part-time students generally take two modules per semester but this can be altered as required. Part-time students attend one day per week during term time and some of the modules run in the evening.

Start dates

  • September 2023

Teaching, Learning and Assessment

The course is delivered through lectures, tutorials and laboratory classes and is supported with extensive online content. The small class sizes provide an excellent learning environment and the material is assessed thorough formal examinations, coursework, class tests and presentations.

Academic profile

The University employs over 1,000 suitably qualified and experienced academic staff - 59% have PhDs in their subject field and many have professional body recognition.

Courses are taught by staff who are Professors (25%), Readers, Senior Lecturers (20%) or Lecturers (55%).

We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic staff (81%) are accredited fellows of the Higher Education Academy (HEA) by Advanced HE - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.

The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise.  The precise staffing for a course will depend on the department(s) involved and the availability and management of staff.  This is subject to change annually and is confirmed in the timetable issued at the start of the course.

Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.

Figures correct for academic year 2021-2022.

Belfast campus

Accommodation

High quality apartment living in Belfast city centre adjacent to the university campus.

Find out more - information about accommodation  


Student Wellbeing

At Student Wellbeing we provide many services to help students through their time at Ulster University.

Find out more - information about student wellbeing  


Belfast Campus Location

The Belfast campus is situated in the artistic and cultural centre of the city, the Cathedral Quarter.

Find out more about our Belfast Campus.

Campus Address

Ulster University,
2-24 York Street,
Belfast
BT15 1AP

T: 02870 123 456

Modules

Here is a guide to the subjects studied on this course.

Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.

In this section

Year one

Biomaterials 1

Year: 1

This module provides the student with the core skills required to critically appraise the composition, properties and function of synthetic biomaterials in the context of the relevant materials science considerations. Issues relating to the regulation of biomaterials, as used in relevant medical devices and the implications of the relevant FDA (USA) and Medical Device Directives (EU) legislation are also covered. Students will also develop skills to enable them to provide a considered opinion regarding the choice of biomaterials for specific clinical applications by considering a number of case studies.

Bioinstrumentation

Year: 1

This research led module provides students with the necessary skills to understand and develop medical engineering devices, providing context and knowledge of the clinical need, details of underpinning hardware/software platforms and regulatory procedures governing implementation.

Tissue Engineering

Year: 1

This module provides the student with the skills required to critically appraise the composition, properties and function of tissue engineered products within the context of the relevant biological and materials science considerations. Issues relating to the ethics and regulation of tissue engineering and the implications of the relevant FDA (USA) and Medical Device Directives (EU) legislation are also covered. Students will also develop skills to enable them to provide a considered opinion regarding the choice of scaffolds, cells, stimulatory factors and bioreactor environment for specific applications by considering a number of case studies.

Research Methods & Facilities

Year: 1

The module proves the underpinnings in research methods required to design and conduct original postgraduate level research programmes. in addition the module aims to develop in-depth knowledge and advanced expertise in the use of specific advanced research facilties.

Research Project (Part 1)

Year: 1

The Research Based Learning module is defined as a period of project work within a research environment, normally of not less than 150 hours, supervised by a member of academic staff of the University. It is designed to inculcate a spirit of critical enquiry coupled with a rigorous academic approach to problem solving in research and enhance the personal, managerial, commercial and technical capabilities of the student. For MSc students this is one of three consecutive research modules, in Research Project 1 the projects are allocated, literature review is undertaken, some initial training/testing is completed and the students develop a plan for the remaining modules. In Research Project 2 the students undertaken a defined piece of work which they then write up in the form of a publication report. The prior literature review, training and practical work completed in Research Project 1&2 will enable the students to make good early progress in their final dissertation (MEC868).

Research Project

Year: 1

A Work Based Learning module is defined as a period of work based learning, normally of not less than 150 hours, supervised by a member of academic staff of the University. Part-time students working as professionals in industry are often involved in work which is entrepreneurial in nature. As a result they frequently gain knowledge, techniques and skills, and acquire expertise, which is equivalent to work at post-graduate level. This module is designed to provide a framework within which such personal development and achievement can be recognised by the award of academic credit.

Entrepreneurship (Engineering)

Year: 1

This module is optional

In this module students are engaged in applying their knowledge of entrepreneurship and the entrepreneurial process in resolving some of the practical problems inherent in enterprise development and new venture creation.

Year two

Work based learning 1

Year: 2

A Work Based Learning module is defined as a period of work based learning, normally of not less than 150 hours, supervised by a member of academic staff of the University. Part-time students working as professionals in industry are often required to do work which is academically challenging. As a result they frequently gain knowledge, techniques and skills, and acquire expertise, which is equivalent to work at post-graduate level. This module is designed to provide a framework within which such personal development and achievement can be recognised by the award of academic credit.

Work based learning

Year: 2

A Work Based Learning module is defined as a period of work based learning, normally of not less than 150 hours, supervised by a member of academic staff of the University. Part-time students working as professionals in industry are often required to do work which is academically challenging. As a result they frequently gain knowledge, techniques and skills, and acquire expertise, which is equivalent to work at post-graduate level. This module is designed to provide a framework within which such personal development and achievement can be recognised by the award of academic credit.

Embedded Systems RTOS Design

Year: 2

This module is optional

This module enables the student to design and implement cost-effective reliable real-time embedded systems that can be shown to meet the current industry performance, reliability and safety standards.

Micro- & Nano-Scale Devices

Year: 2

This module is optional

The course provides an in depth knowledge of micro-nanodevices, as well as micro and nanofabrication techniques using elements from nanoscience and nanotechnology.

Nanoscale Analysis & Metrology

Year: 2

This module is optional

This module focuses on nano and micro-scale analysis and metrology. The principle of operation and limitation of each technique are explained, the applications to the nanotechnology arena are described.

Manufacturing systems

Year: 2

This module is optional

This module provides a concise review of modern manufacturing, time compression methodologies and current manufacturing systems - their specification, implementation and development. The flow of data within a product lifecycle is analysed from design through to manufacture and the effective utilisation of advanced manufacturing technology addressed.

Finite Element Analysis and Computational Fluid Dynamics

Year: 2

This module is optional

An introduction to continuum modelling approaches will enable students to understand the concepts and applications of finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) modles. Specific skills will be developed using commercially available software in both FEA and CFD.An introduction to continuum modelling approaches will enable students to understand the concepts and applications of finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) modles. Specific skills will be developed using commercially available software in both FEA and CFD.

Quality Improvement

Year: 2

This module is optional

This module considers modern approaches to Quality Improvement. The context of product or service is set for the interpretation of Quality from different perspectives. The Quality topics are considered under the themes of definition, measurement, actions, improvement and control. Modern and traditional management approaches are evaluated and techniques appropriate to product or service characteristics and organisation performance are considered.

Computer Aided Engineering for Managers

Year: 2

This module is optional

This module provides a concise and application based overview of current computer aided engineering systems by providing a detailed summary of current rapid-prototyping and manufacturing processes, multi-axis advanced manufacturing technologies, digital inspection and simulation. The application of CAE to enhance the product lifecycle will be the fundamental objective of this module. The integration of these systems from new product introduction (NPI) through to digital inspection will be addressed.

Polymer Technology

Year: 2

This module is optional

At the end of the module the student should be able to critically appraise alternative thermoplastic conversion and fabrication processing routes. Through analysis of processing behaviour, they should be capable of developing appropriate strategy for selection of conversion routes for a range of representative material systems and applications in terms of total economics and quality enhancement.

Composite Engineering

Year: 2

This module is optional

At the end of the module the student should have acquired a high level of competence the many facets of composite materials and their processing methods leading to an active role as a member of a Production Management or Research team. The student should have the ability to select between competing 'composite' technologies for specific applications and hence be in a position to devise conversion systems and associated quality assurance procedures, having regard to maximising cost effectiveness and product reliability.

Process Product Optimisation

Year: 2

This module is optional

At the end of the module the student should be capable of critically assessing the complete polymer or composite system. Using modelling and analysis techniques, they should be capable of designing the complete system to meet a specific performance requirement, thus removing much of the trial and error from the practice.

Mechanics of Sheet Metal Forming

Year: 2

This module is optional

An introduction to the theory of engineering plasticity applied to common sheet metal forming processes. The relevant theories are presented and their application to real industrial processes are emphasised.

Standard entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

Entry Requirements

PgDip - Normally, an Honours or non-Honours degree or postgraduate diploma/certificate in a relevant engineering, technology or science discipline. In exceptional circumstances, where an individual has substantial and significant working/industrial experience, a portfolio of written evidence may be considered as an alternative entrance route. It is possible to transfer onto the MSc version of the course after successfully completing the PGDip.

MSc - Specific details on the admission criteria can be found at the course webpage provided below. Normally, a second class honours degree or better in a relevant engineering, science, physics or technology discipline. Or a postgraduate diploma/certificate in a relevant engineering or technology discipline. In exceptional circumstances, where an individual has substantial and significant working/industrial experience, a portfolio of written evidence may be considered as an alternative entrance route.

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Exemptions and transferability

Students can apply for exemptions for specific modules based on prior learning.

Careers & opportunities

Career options

Upon successful completion of the programme students will be more employable, particularly within the medical device, pharma and biotechnology sectors. Another important opportunity for MSc students is the academic career and/or research career through a PhD programme such as those offered within the school.

Work placement / study abroad

Part-time students can undertake work-based learning modules. We have close links with the vibrant medical device sector with past graduates working in many key companies. Our students have the opportunity to learn directly from industry in an optional semester 2 module, which includes industrial guest speakers.During the dissertation, which runs throughout the yearlong course, students will undertake original research and be mentored as part of an existing research group. The research facilities within the school include a comprehensive suite of analytical equipment including several electron microscopes, cell biology, tissue engineering, nanoparticle and cardiology laboratories, and a comprehensive 3D printing suite.

Apply

Start dates

  • September 2023

Fees and funding

Fees (total cost)

The price of your overall programme will be determined by the number of credit points that you initiate in the relevant academic year.

For modules commenced in the academic year 2023/24, the following fees apply:

Fees
Credit PointsNI/ROI/GB CostInternational Cost
5 £186.65 £440
10 £373.30 £880
15 £559.95 £1,320
20 £746.60 £1,760
30 £1,119.90 £2,640
60 £2,239.80 £5,280
120 £4,479.60 £10,560
180 £6,719.40 £15,840

NB: A standard full-time PGCert is equivalent to 60 credit points per year. A standard full-time PGDip is equivalent to 120 credit points per year.

Scholarships, awards and prizes

A postgraduate Tuition Fee loan is available to N.Ireland, UK and EU students. More details are available at:

https://www.ulster.ac.uk/ulster-life/study-at-ulster/postgraduate/postgraduate-tuition-fee-loan

Additional mandatory costs

It is important to remember that costs associated with accommodation, travel (including car parking charges) and normal living will need to be covered in addition to tuition fees.

Where a course has additional mandatory expenses (in addition to tuition fees) we make every effort to highlight them above. We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals, as well as first-class facilities and IT equipment. Computer suites and free Wi-Fi are also available on each of the campuses.

There are additional fees for graduation ceremonies, examination resits and library fines.

Students choosing a period of paid work placement or study abroad as a part of their course should be aware that there may be additional travel and living costs, as well as tuition fees.

See the tuition fees on our student guide for most up to date costs.

Contact

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.


For more information visit

Disclaimer

  1. Although reasonable steps are taken to provide the programmes and services described, the University cannot guarantee the provision of any course or facility and the University may make variations to the contents or methods of delivery of courses, discontinue, merge or combine courses and introduce new courses if such action is reasonably considered to be necessary by the University. Such circumstances include (but are not limited to) industrial action, lack of demand, departure of key staff, changes in legislation or government policy including changes, if any, resulting from the UK departing the European Union, withdrawal or reduction of funding or other circumstances beyond the University’s reasonable control.
  1. If the University discontinues any courses, it will use its best endeavours to provide a suitable alternative course. In addition, courses may change during the course of study and in such circumstances the University will normally undertake a consultation process prior to any such changes being introduced and seek to ensure that no student is unreasonably prejudiced as a consequence of any such change.
  1. The University does not accept responsibility (other than through the negligence of the University, its staff or agents), for the consequences of any modification or cancellation of any course, or part of a course, offered by the University but will take into consideration the effects on individual students and seek to minimise the impact of such effects where reasonably practicable.
  1. The University cannot accept any liability for disruption to its provision of educational or other services caused by circumstances beyond its control, but the University will take all reasonable steps to minimise the resultant disruption to such services.
Back to Top