Mechatronic Engineering is a multidisciplinary field combining electronic, mechanical, computer and control engineering.
Summary
Mechatronics unites the principles of mechanics, electronics, and computing to develop simpler, more economical and reliable systems.
This MEng Hons course has been designed with employers to prepare students for a wide range of industrial electronic and mechanical roles. Expanding upon the knowledge gained in the first four years (3 in study, 1 in industry), this course will allow you to choose specialist subjects in the fifth year. This will allow you to extend your knowledge in an area of interest to you, or an area which will provide further career opportunities.
Using a connected programme of study, which will allow you to build on the knowledge you gain in each semester, this degree will prepare you to become a well-rounded engineer equipped for a wide range of roles within industry.
We’d love to hear from you!
We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.
Please contact Ulster University with any queries or questions you might have about:
Course specific information
Fees and Finance
Admissions
For any queries regarding getting help with your application, please select Admissions in the drop down below.
For queries related to course content, including modules and placements, please select Course specific information.
Core to this degree is the Industrial Placement, in which you will take up employment in an engineering company, within the UK or worldwide. This industrial placement provides an important real world context for your studies and also allows you to gain relevant industrial experience, which is beneficial when applying for graduate positions.
Associate awards
Diploma in Professional Practice DPP
Diploma in Professional Practice International DPPI
Diploma in International Academic Studies DIAS
Attendance
Duration and Mode of Attendance
Full-time: five years (including placement).
Attendance Typically 18-20 timetabled hours per week between 09.15 am and 5.15 pm. There are no timetabled activities on Wednesday afternoons.
Start dates
September 2025
Teaching, Learning and Assessment
Teaching Methods
Formal lectures are supplemented by tutorials and laboratory investigations, as appropriate. Practical ‘hands on’ laboratory sessions are an integral part of many modules throughout all years. Case studies and group mini-project work are also extensively used. In the final year there is a major individual project.
Assessment
Generally, a combination of continuous assessment and examination is employed in each module. Continuous assessment includes class tests, library and laboratory based assignments, and individual and group project work. Some modules across all years are continuously assessed.
Attendance and Independent Study
The content for each course is summarised on the relevant course page, along with an overview of the modules that make up the course.
Each course is approved by the University and meets the expectations of:
As part of your course induction, you will be provided with details of the organisation and management of the course, including attendance and assessment requirements - usually in the form of a timetable. For full-time courses, the precise timetable for each semester is not confirmed until close to the start date and may be subject to some change in the early weeks as all courses settle into their planned patterns. For part-time courses which require attendance on particular days and times, an expectation of the days and periods of attendance will be included in the letter of offer. A course handbook is also made available.
Courses comprise modules for which the notional effort involved is indicated by its credit rating. Each credit point represents 10 hours of student effort. Undergraduate courses typically contain 10, 20, or 40 credit modules (more usually 20) and postgraduate courses typically 15 or 30 credit modules.
The normal study load expectation for an undergraduate full-time course of study in the standard academic year is 120 credit points. This amounts to around 36-42 hours of expected teaching and learning per week, inclusive of attendance requirements for lectures, seminars, tutorials, practical work, fieldwork or other scheduled classes, private study, and assessment. Teaching and learning activities will be in-person and/or online depending on the nature of the course. Part-time study load is the same as full-time pro-rata, with each credit point representing 10 hours of student effort.
Postgraduate Master’s courses typically comprise 180 credits, taken in three semesters when studied full-time. A Postgraduate Certificate (PGCert) comprises 60 credits and can usually be completed on a part-time basis in one year. A 120-credit Postgraduate Diploma (PGDip) can usually be completed on a part-time basis in two years.
Class contact times vary by course and type of module. Typically, for a module predominantly delivered through lectures you can expect at least 3 contact hours per week (lectures/seminars/tutorials). Laboratory classes often require a greater intensity of attendance in blocks. Some modules may combine lecture and laboratory. The precise model will depend on the course you apply for and may be subject to change from year to year for quality or enhancement reasons. Prospective students will be consulted about any significant changes.
Assessment methods vary and are defined explicitly in each module. Assessment can be a combination of examination and coursework but may also be only one of these methods. Assessment is designed to assess your achievement of the module’s stated learning outcomes. You can expect to receive timely feedback on all coursework assessments. This feedback may be issued individually and/or issued to the group and you will be encouraged to act on this feedback for your own development.
Coursework can take many forms, for example: essay, report, seminar paper, test, presentation, dissertation, design, artefacts, portfolio, journal, group work. The precise form and combination of assessment will depend on the course you apply for and the module. Details will be made available in advance through induction, the course handbook, the module specification, the assessment timetable and the assessment brief. The details are subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.
Normally, a module will have 4 learning outcomes, and no more than 2 items of assessment. An item of assessment can comprise more than one task. The notional workload and the equivalence across types of assessment is standardised. The module pass mark for undergraduate courses is 40%. The module pass mark for postgraduate courses is 50%.
The class of Honours awarded in Bachelor’s degrees is usually determined by calculation of an aggregate mark based on performance across the modules at Levels 5 and 6, (which correspond to the second and third year of full-time attendance).
Level 6 modules contribute 70% of the aggregate mark and Level 5 contributes 30% to the calculation of the class of the award. Classification of integrated Master’s degrees with Honours include a Level 7 component. The calculation in this case is: 50% Level 7, 30% Level 6, 20% Level 5. At least half the Level 5 modules must be studied at the University for Level 5 to be included in the calculation of the class.
All other qualifications have an overall grade determined by results in modules from the final level of study.
In Masters degrees of more than 200 credit points the final 120 points usually determine the overall grading.
Figures from the academic year 2022-2023.
Academic profile
The University employs over 1,000 suitably qualified and experienced academic staff - 60% have PhDs in their subject field and many have professional body recognition.
Courses are taught by staff who are Professors (19%), Readers, Senior Lecturers (22%) or Lecturers (57%).
We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic and learning support staff (85%) are recognised as fellows of the Higher Education Academy (HEA) by Advance HE - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.
The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise. The precise staffing for a course will depend on the department(s) involved and the availability and management of staff. This is subject to change annually and is confirmed in the timetable issued at the start of the course.
Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.
Here is a guide to the subjects studied on this course.
Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.
This module provides an understanding of the language and terminology of mathematics, together with the mathematical techniques from algebra, calculus and statistics that are necessary for the description and analysis of engineering systems.
Introductory Software Development
Year: 1
Status: C
Students will be introduced to the basic aspects of software development through the use of the Python programming language. An emphasis is placed on developing a broad understanding of the types of programming used in Engineering and beyond, rather than depth in each specific area. Students will learn about objects, modules and code re-usability and self-documentation. They will be encouraged to take a platform independent approach to development and choose their own tools. They should complete the module with a basic knowledge of the development landscape in terms of tools and techniques.
Analogue and Digital Electronics 1
Year: 1
Status: C
This module will provide an introduction to semiconductor devices and their application in electronic circuits such as power supplies, voltage regulators and simple amplifier circuits. It will also introduce the field of digital electronics, with simple combinational logic circuit analysis and simplification
Mechanical Systems & Analysis 1
Year: 1
Status: C
Analysis of statics and dynamics systems are a key foundation for mechanical and mechatronic engineers. This module provides fundamental concepts and principles in order to solve static and dynamics problems, and gives a solid methodology and framework in order to tackle new and unfamiliar problems.
Its content includes: Basic and derived units, static equilibrium, statically stressed systems, theory of torsion and bending, kinematics of a particle and kinetics of a particle. Those theoretical and practical principles required within each topic area will be developed in lectures and applied in assignments and tutorials.
The Global Engineer
Year: 1
Status: C
This module will introduce students to working in multidisciplinary teams to solve a real-world problem and present their solution to an audience of their tutors and peers.
Fundamentals of Engineering and Technology
Year: 1
Status: C
This module will introduce students to studying an Engineering programme at Ulster University and will develop some of the foundational knowledge and skills that will enable them to succeed on their degree programme.
Year two
Control Theory & Applications
Year: 2
Status: C
This module provides an understanding of the theoretical concepts and use of feedback-control systems. Theoretical studies are supported by the use of appropriate PC-based analysis and design simulation packages.
Analogue and Digital Electronics 2
Year: 2
Status: C
This module considers further component and system level analysis and design of analogue and digital electronic circuitry, appropriate to fields such as computing, communications, signal processing and instrumentation.
Mechatronics 1
Year: 2
Status: C
This module provides an understanding of the concepts and use of mechatronic systems and of the instrumentations, actuator, sensors, and feedback-control system components necessary for such systems. Theoretical studies are supported by the use of appropriate PC-based analysis and design packages.
Embedded Systems and Microcontrollers
Year: 2
Status: C
This module will equip students with necessary knowledge and hardware-software design skills needed to design/implement microcontroller based embedded systems.
Engineering Programming
Year: 2
Status: C
This module is designed to introduce engineering students to the basic principles of algorithmic programming, and the solution of engineering problems using MATLAB and Simulink.
Mechanical Systems and Analysis 2
Year: 2
Status: C
This module provides an extension of the fundamental principles of Dynamics and Statics and Strength of Materials in relation to mechanical engineering and provides a methodology for their practical application.
Year three
Industrial Placement
Status: O
Year: 3
This module is optional
This module provides undergraduate students with an opportunity to gain structured and professional work experience, in a work-based learning environment, as part of their planned programme of study. This experience allows students to develop, refine and reflect on their key personal and professional skills. The placement should significantly support the development of the student's employability skills, preparation for final year and enhance their employability journey.
International Academic Studies
Status: O
Year: 3
This module is optional
This module provides an opportunity to undertake an extended period of study outside the UK and Republic of Ireland. Students will develop an enhanced understanding of the academic discipline whilst generating educational and cultural networks.
Year four
Nanotechnology
Status: O
Year: 4
This module is optional
This module gives the student an overview of nanotechnology and its applications in engineering.
Object Oriented Programming
Status: O
Year: 4
This module is optional
This module extends the students understanding of the design and creation of software structures using an object-oriented paradigm. The programming language is C++ which is of particular relevance to engineering students.
Communications circuit design
Status: O
Year: 4
This module is optional
This module enables the student to undertake complete analogue communications circuit design problems.
ASICs and digital design
Status: O
Year: 4
This module is optional
This module will introduce the building blocks of the digital circuits and approaches to analyse, synthesis, verify and test the digital circuits using EDA tools and relating hardware (e.g. FPGA).
Embedded Systems
Status: O
Year: 4
This module is optional
This module will provide knowledge relating to embedded systems from programming to interfacing and relating IoT based applications. More importantly, the focus will be to increase skills of students to develop a design from a paper to a prototype level.
Mechatronics 2
Status: O
Year: 4
This module is optional
This module provides a final year course in Mechatronics. Topics covered include: Examples of mechatronic systems; modelling of mechatronics systems; programmable-logic controllers; design the digital frequency and time measurement systems; analysis and design of feedback and modern control systems.
Academic placement - Augsburg
Status: O
Year: 4
This module is optional
The module is offered in Germany and enables the student to study engineering through the German language and partially fulfills the requirements for being awarded the German Master's Degree in Mechatronic Systems.
Power Electronics and Electrical Drives
Status: O
Year: 4
This module is optional
This module is offered in Augsburg, Germany, and covers the theoretical and practical aspects of Power Electronics and Electrical Machines combined with the required new power semiconductors.
VLSI Design
Status: O
Year: 4
This module is optional
The module is offered in Germany and covers the theoretical and practical aspects of VLSI by design and fabrication of ASIC chips specified to perform signal processing functions.