Internet of Things

MSc

2023/24 Full-time Postgraduate course

Award:

Master of Science

Faculty:

Faculty of Computing, Engineering and the Built Environment

School:

School of Computing

Campus:

Belfast campus

Start dates:

September 2023

January 2024

This course is now closed for International applications for September 2023

Overview

Creating the next generation of high-quality practitioners for the IoT industry.

The University regularly ‘refreshes’ courses to make sure they are as up-to-date as possible.

In addition it undertakes formal periodic review of courses in a process called 'revalidation’ to ensure that they continue to meet standards and are current and relevant.

This course will be revalidated in the near future and it is possible that there will be some changes to the course as described in this prospectus.

Summary

The Internet of Things is expected to have a significant impact on industry with predictions of its success and growth constantly rising.

The MSc Internet of Things is an intensive one-year specialist programme that prepares you for an industrial career with skills in Computing Science, Engineering and Data Analytics. The course covers leading-edge knowledge of Sensor technology, Networks, Security, Pervasive Computing, Big Data and Data Mining in IoT domain. The course is accredited (initial) by BCS, The Chartered Institute for IT, for Partial CITP (Chartered IT Professional) and Partial CEng (Chartered Engineer).

The delivery of the course is supported by multi-million pound infrastructure of a large-scale pervasive and mobile computing environment, a suite of contemporary sensing technologies and rapid prototyping facilities. The course content has been informed by internationally leading research being conducted by the School of Computing and the School of Engineering and by our strong industry partnerships, most notably with BT through the jointly established £28.6 million BT Ireland Innovation Centre.

The Internet of Things is an exciting and exponentially growing area both within industry and academic. The skills trained from the course are in high demand within the sector across the key verticals of Smart Cities, Industrial IoT, Connected Health and Smart Homes. The course also provides a platform to embark on further research studies.

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.

About this course

About

Students will study the following modules;

Pervasive Computing

The focus of this module is to provide an opportunity for students to gain an in-depth understanding of pervasive computing and to apply this understanding to a range of application domains through working with wireless sensor networks. The module surveys emerging hardware and software components associated with Pervasive Computing Systems, examining the technical and societal issues concerned with a pervasive infrastructure, wireless networks, protocols and emergent algorithms. In doing so a number of examples of innovative systems and applications are reviewed. The module includes a strong practical element where students will be asked to develop services providing support for wearable and smart home context-aware solutions.

Statistical Modelling & Data Mining

This module first provides a systematic understanding of probability and statistics. It then provides an in-depth analysis of the statistical modelling process and how to answer hypothesised questions. Next, the module provides a synthesis of the concepts of data mining and methods of exploring data. The content will be delivered and experienced through lectures, seminars and practical exercises using tools, such as Python, R and Weka. Online tools, such as Blackboard will be used to facilitate blended learning approach. On completing this module, students will be able to compute conditional probabilities and use null hypothesis significance testing to test the significance of results and understand and compute statistical measures such as the p-value for these tests. Students will apply, evaluate and critically appraise this knowledge in a range of complex real-world contexts.

Digital Signal Processing

This module enables the student to gain deep understanding and enable them to design, apply, and evaluate digital signal processing techniques as related to IoT.

IoT Networks & Security

IOT has emerged as a significant technology that can be used for automation and empowerment. The module covers the life cycle of IoT security mechanisms, including the design, development, management and, most importantly, how they are sustained. The module provides an understanding of the IoT architecture, protocols and security considerations

Big Data & Infrastructure

Within this module a variety of database and data storage paradigms will be explored, ranging from more traditional relational systems to NoSql and object stores, time series databases, semantic store and graph stores.

Consideration will be given to big data and the problem with storing and querying high volumes of highly variable data which is stored and processed at a high speed. The cloud computing paradigm will also be introduced and how to avail of its power and resources.

The core concepts of distributed computing will be examined in the context of Hadoop. Students will be taught, practically and theoretically, about the components of Hadoop, workflows, functional programming concepts, use of MapReduce, Spark, Pig, Hive and Sqoop.

Embedded Systems & Sensors

This module enables the student to understand, design, apply, and critically evaluate embedded systems and their applications as enabling technology for the IoT.

Masters Project

This module is optional

The aim of the project is to allow the student to demonstrate their ability in undertaking an independent research project for developing theoretical perspectives, addressing research questions using data, or analysing and developing real-world solutions. They will be expected to utilise appropriate methodologies and demonstrate the skills gained earlier in the course when implementing the project.

As part of the project development activity, they will be required to extract and demonstrate knowledge from the literature in an analytic manner and develop ideas and appropriate hardware and software implementations. This may involve the development of a hardware sensor component or may access existing hardware to develop new/ novel software processing or data analytics. This will typically be followed by a structured analysis of needs for a realistic application or actual organisation and identification and application of tools/techniques required to deliver a well-formed solution. Through the project, the student will develop capabilities to analyse cases studies related to IoT / Artificial Intelligence / Advanced Computer Science and its application in a range of domains including transport, environment, health and commerce. The project may further create improvement plans and recommendations for future implementation based on the tools/technologies experienced during the programme of study.

In summary, the Masters Project represents a piece of work performed by the student under suitable staff supervision which draws both from the practical and creative nature of a problem-solving project and the traditional, scholarly exposition of an area of study. The content of the work must be original and contain a critical appraisal of the subject area.

Masters Applied Research Project

This module is optional

In this final module, you will undertake an independent research project, addressing real research challenges or analysing and developing real world solutions. The project will draw upon knowledge and skills developed throughout your MSc. Your research will involve a detailed literature review to understand and define the problem. Following this, you will design, implement and evaluate a novel solution. You will then communicate the outcome of your research through a research paper and presentation.

As part of the project development activity you will be required to extract and demonstrate knowledge from the literature in an analytic manner and develop ideas including, appropriate hardware and software implementations. This may involve the development of a hardware sensor component or may access existing hardware to develop new / novel software processing or data analytics. This will typically be preceded by a structured analysis of needs for a realistic application or actual organisation and identification and application of tools / techniques required to deliver a well-formed solution. Through the project you will develop capabilities to analyse cases studies related to IoT / Artificial Intelligence / Advanced Computer Science and its application in a range of domains including transport, environment, health and commerce. The project may further create improvement plans and recommendations for future implementation based upon the tools / technologies experienced during the programme of study.

In summary the masters project represents a piece of work performed by the student under suitable staff supervision which draws both from the practical and creative nature of a problem-solving project and the traditional, scholarly research. The content of the work must be original and contain a critical appraisal of the subject area.

Attendance

Typically 15 timetabled hours per week Monday – Friday including lectures, tutorials and practicals in the computer labs for the taught components of the course. Research Project takes place in the final semester seperately.

Start dates

  • September 2023
  • January 2024

Teaching, Learning and Assessment

Teaching is delivered through lectures, directed tutorials, seminars, and practical sessions, some of which are by industry professionals / researchers.

The course is assessed by 100% coursework.

Academic profile

Academic staff in the School of Computing are qualified to teach in higher education with most of them holding at least a Postgraduate Certificate in Higher Education Practice. The majority of academic staff in the School (83%) are accredited fellows of the Higher Education Academy (HEA). Within the School of Computing courses are taught by staff who are Professors (20%), Readers/Senior Lecturers (32%) and Lecturers (48%).

The University employs over 1,000 suitably qualified and experienced academic staff - 59% have PhDs in their subject field and many have professional body recognition.

Courses are taught by staff who are Professors (25%), Readers, Senior Lecturers (20%) or Lecturers (55%).

We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic staff (81%) are accredited fellows of the Higher Education Academy (HEA) by Advanced HE - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.

The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise.  The precise staffing for a course will depend on the department(s) involved and the availability and management of staff.  This is subject to change annually and is confirmed in the timetable issued at the start of the course.

Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.

Figures correct for academic year 2021-2022.

Belfast campus

Accommodation

High quality apartment living in Belfast city centre adjacent to the university campus.

Find out more - information about accommodation  


Student Wellbeing

At Student Wellbeing we provide many services to help students through their time at Ulster University.

Find out more - information about student wellbeing  


Belfast Campus Location

The Belfast campus is situated in the artistic and cultural centre of the city, the Cathedral Quarter.

Find out more about our Belfast Campus.

Campus Address

Ulster University,
2-24 York Street,
Belfast
BT15 1AP

T: 02870 123 456

Standard entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

Entry Requirements

You need:

(a)

(i) a second class lower division honours degree or better, in the subject areas of computing, engineering or cognate area from a university of the United Kingdom or the Republic of Ireland, or from a recognised national awarding body, or from an institution of another country which has been recognised as being of an equivalent standard; or

(ii) an equivalent standard (normally 50%) in a Graduate Diploma, Graduate Certificate, Postgraduate Certificate or Postgraduate Diploma or an approved alternative qualification; and the qualification must be in the subject areas of computing, engineering or related discipline

and

(b) provide evidence of competence in written and spoken English (GCSE grade C or equivalent).

In exceptional circumstances, as an alternative to (a) (i) or (a) (ii) and/or (b), where an individual has substantial and significant experiential learning, a portfolio of written evidence demonstrating the meeting of graduate qualities (including subject-specific outcomes, as determined by the Course Committee) may be considered as an alternative entrance route. Evidence used to demonstrate graduate qualities may not be used for exemption against modules within the programme

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Exemptions and transferability

The entry requirements facilitate accreditation of prior learning.

Careers & opportunities

Career options

The Internet of Things has become one of the most discussed technology trends of recent years, mainly due to the expected impact that it will have and, as a result, how it will change the way people live, work and travel. As the expectations of how IoT will redefine an organisation’s operations grow, so too are the expectations to have knowledgeable and skilled staff in the areas of computing, engineering and data science in addition to having an appreciation for business processes and market potential. Taking all of this into consideration, graduates from the course will be well placed to progress into a wide variety of careers, across a range of industrial settings within the sector across the key verticals of Smart Cities, Industrial IoT, Connected Health and Smart Homes. We have active Industry engagement and links with vibrant technology sector in Northern Ireland. Graduates from the course also have opportunity to embarke on further research at the Ph.D. level.

Work placement / study abroad

The course doesn’t require placement experience.

There are opportunities in the course for you to participate in research and industry related projects in the IoT domain through our two Innovation centres BTIIC and CHIC.

BTIIC is the BT Ireland Innovation Centre (BTIIC) in collaboration with Ulster University and BT. The centre aims to invent new ways of using data analytics, artificial intelligence and the IoT, through two work streams of Intelligent System and IoT.

CHIC is the Connected Health Innovation Centre is funded by Invest NI to support business led research in the area of connected health, with focus on data analytics and IoT. The centre currently has over 30 national and international member companies with both technical expertise and clinical experience.

Apply

Start dates

  • September 2023
  • January 2024

Fees and funding

Fees (total cost)

Northern Ireland, Republic of Ireland and EU Settlement Status Fees

£6,720.00

International Fees

£15,840.00

Additional mandatory costs

It is important to remember that costs associated with accommodation, travel (including car parking charges) and normal living will need to be covered in addition to tuition fees.

Where a course has additional mandatory expenses (in addition to tuition fees) we make every effort to highlight them above. We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals, as well as first-class facilities and IT equipment. Computer suites and free Wi-Fi are also available on each of the campuses.

There are additional fees for graduation ceremonies, examination resits and library fines.

Students choosing a period of paid work placement or study abroad as a part of their course should be aware that there may be additional travel and living costs, as well as tuition fees.

See the tuition fees on our student guide for most up to date costs.

Contact

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.


For more information visit

Back to Top