

Citation Strategy

TOSHIBA

Dr Jessica Bates, School of Education

Mick Carragher, Sub-Librarian, Research Support Services

Professor Mark Shevlin, School of Psychology

May 2018

Contents

•	Introduction	3
•	What are the citation rates at Ulster?	4
•	What factors have an impact on citations?	7
•	How citation factors have had an impact on citations at Ulster, with comparative OUB and UK data	12
•	What can staff, units of assessment (UoAs), and the wider university do to promote research and increase citations?	15
•	10 things individual academics/researchers should be doing to increase their citations and the scholarly impact of their work	18
•	References	20
A	ppendices	
•	Appendix A : Definitions of key terms used in relation to metrics	22
•	Appendix B: Example of UoA-level citation data 2014-2017 (report run April 2018)	23
•	Appendix C : Top 50 cited articles written by Ulster University authors (2014-20 <u>17)</u>	25

Introduction

Aim

To increase staff citations at Ulster University

Objectives

- Increase research output with at least one international author

- Increase research output in the top Q1 of journals

- Increase citations of other relevant Ulster research

- Increase use of social media, research discovery sites and altmetrics

The development and implementation of an Ulster University Citation Strategy, leading to increased citations, will have benefits at an individual level, at subject/UoA level, and for the institution as a whole.

At an individual level, staff can be pro-active in their approach to increasing their citations. When academics/researchers publish, they are seeking to contribute to the knowledge base in their field, and a key indicator of scholarly impact is when that published output is cited by others. It is nonetheless important to be aware of the caveats in using citations as a proxy for research impact. The three main issues of concern are that (i) citation is not necessarily an indication of quality or that the citer agrees with the work that is being cited; (ii) self-citations can skew the analysis; and (iii) there may be field-dependent factors that mean citation practices differ in different disciplines.

Analysis of citations at subject level enables benchmarking against performance in other institutions and the UK as a whole, as well as being useful in terms of providing quantitative evidence of the research environment, for example for the REF. Both *The Metric Tide* (2015) and *The Leiden Manifesto* (2015), amongst others, call for the responsible use of research metrics (including citation metrics) in research evaluation and it is important that the guidelines and principles outlined in these publications are adhered to.

At the institutional level, citations are a key component in the calculation of world university rankings. Citations count towards 30% of the overall scoring in the Times Higher Education World University Rankings and 20% in the QS World University Rankings. Citation data can also contribute to metrics relating to the research environment at the institutional level.

What are the citation rates at Ulster?

Tables 1 and 2 show the overall numbers of scholarly output¹ from Ulster over the time-periods 2014-2017 and 2008-2013. The tables have been produced by the University's Sub-Librarian for Research Support Services using SciVal with underlying data from Scopus. They also include the average citations per publication and the field-weighted citation impact for the university overall and for various subject areas. Comparative data is provided for Queen's University Belfast (for two reasons: geographic proximity and because they are our main institutional collaborator) and for the United Kingdom as a whole. For both time-periods, Ulster University figures are below the UK and QUB figures for overall citations per publication and field-weighted citation impact.

Citation figures for different subject areas should not be compared with each other, due to differing citation cultures across disciplines. However it can be useful to examine the citation impact in a subject area in one institution with performance in the same subject in a comparable institution or across the UK as a whole as a benchmarking exercise. It must also be noted that citation data is updated regularly within the Scopus and SciVal databases and that reports are therefore accurate for the date on which they were run. The accuracy of reports is also dependent on the data within Scopus and SciVal being accurate.

Subject areas at Ulster that have performed above the UK mean in relation to field-weighted citation impact for scholarly output published between 2014 and 2017 are: Materials Science; Energy; Chemical Engineering; Chemistry; Decision Sciences (which includes Information Systems and Management, Management Science and Operations Research, and Statistics); and Health Professions. For information regarding citation impact at UoA level, see the example provided in Appendix B (further reports can be generated when UoA membership is confirmed).

¹See Appendix A: Definitions of key terms used in relation to metrics for a definition of what is included under Scholarly Output, and explanations of other key terms used in this document.

Table 1: Subject-area metrics for research output 2014-2017 (calculated January 2018)

Subject Area		Ulster Universit	y	United	Kingdom	Queen's University Belfast			
		P1.14			F.14		F .14		
		Field-			Field-		Field-		
		Weighted	scholarly		Weighted		Weighted	scholarly	
	Citations per	Citation	output (2014-	Citations per	Citation	Citations per	Citation	output (2014-	
	publication	Impact	2017)	publication	Impact	publication	Impact	2017)	
Overall	3.8	1.2	3702	5.1	1.6	6.1	1.8	10182	
Arts and Humanities	1.8	0.9	292	1.7	1.5	2.0	1.6	698	
Agricultural & Biological Sciences	5.5	1.2	176	5.7	1.6	6.8	2.0	809	
Biochemistry, Genetics & Molecular Biology	5.4	1.2	378	8.4	1.7	9.2	1.9	1192	
Business, Management and Accounting	2.4	1.0	239	2.8	1.6	3.3	1.7	245	
Chemical Engineering	6.3	2.3	116	7.4	1.5	6.7	1.8	372	
Chemistry	6.6	1.6	176	8.1	1.6	6.7	1.5	746	
Computer Science	2.4	1.0	620	3.2	1.5	3.8	2.3	1042	
Decision Sciences	4.1	1.4	53	3.7	1.3	4.3	1.8	78	
Earth and Planetary Sciences	4.3	1.2	119	6.3	1.6	7.1	1.6	725	
Economics and Finance	1.2	0.8	134	2.4	1.5	3.0	1.9	192	
Energy	5.8	1.5	135	5.4	1.6	5.2	1.8	335	
Engineering	2.9	1.3	482	3.8	1.5	4.5	1.8	1631	
Environmental Sciences	4.3	1.5	185	5.9	1.8	5.8	1.8	634	
Health Professions	4.7	1.7	148	3.6	1.5	3.1	1.1	93	
Immunology and Microbiology	4.2	1.4	74	8.3	1.7	6.8	1.7	324	
Materials Science	5.4	1.8	190	5.6	1.5	5.6	1.8	654	
Mathematics	1.6	0.8	214	2.8	1.4	2.7	1.7	483	
Medicine	4.9	1.5	1227	6.2	1.7	8.3	2.2	2792	
Neuroscience	6.9	1.4	151	7.1	1.6	5.2	1.4	223	
Nursing	4.5	1.3	260	3.3	1.3	2.6	1.2	322	
Pharmacology	5.2	1.3	75	5.8	1.5	5.1	1.6	357	
Physics	4.1	1.0	150	6.4	1.6	6.6	1.6	1392	
Psychology	4.6	1.5	277	3.8	1.4	3.2	1.1	369	
Social Sciences	1.9	0.9	723	2.2	1.5	2.1	1.2	1388	

Table 2: Subject-area metrics for research output 2008-2013 (calculated April 2018)

Subject Area	Ulster Universi	ty		United Kingdor	m	Queen's University Belfast			
		Field-			Field-		Field-		
		Weighted	scholarly		Weighted		Weighted	scholarly	
	Citations per	Citation	output (2008-	Citations per	Citation	Citations per	Citation	output (2008-	
	publication	Impact	2013)	publication	Impact	publication	Impact	2013)	
Overall	16.6	1.4	5,835	20.0	1.5	21.2	1.6	13,357	
Agricultural & Biological Sciences	19.7	1.3	284	25.8	1.7	23.6	1.7	1,023	
Arts and Humanities	8.1	1.1	410	8.1	1.5	15.6	2.0	943	
Biochemistry, Genetics & Molecular Biology	21.9	1.1	533	35.1	1.6	34.7	1.6	1,612	
Business, Management and Accounting	11.8	1.3	405	13.3	1.5	17.1	1.8	288	
Chemical Engineering	35.5	2.1	181	27.7	1.6	29.0	1.8	181	
Chemistry	31.8	1.8	241	28.3	1.6	30.3	1.6	1,076	
Computer Science	8.9	1.2	1,255	12.2	1.5	9.3	1.3	1,414	
Decision Sciences	13.5	1.6	109	17.3	1.6	20.9	1.5	106	
Earth and Planetary Sciences	15.6	1.6	180	25.4	1.6	35.1	2.3	841	
Economics and Finance	6.8	1.1	186	12.4	1.5	13.8	1.3	251	
Energy	44.5	2.2	158	18.1	1.6	21.9	2.0	316	
Engineering	11.8	1.5	846	13.0	1.5	12.7	1.4	2,055	
Environmental Sciences	27.3	1.9	265	24.5	1.8	24.9	1.7	783	
Health Professions	14.2	1.3	197	15.5	1.4	16.1	1.3	125	
Immunology and Microbiology	20.3	0.9	145	35.8	1.7	27.1	1.5	456	
Materials Science	21.5	1.4	337	19.6	1.5	19.1	1.4	868	
Mathematics	7.2	0.8	356	13.0	1.5	10.3	1.4	620	
Medicine	23.0	1.7	1,512	23.5	1.7	28.8	2.0	3,043	
Neuroscience	26.0	1.4	212	33.0	1.6	22.8	1.3	313	
Nursing	15.3	1.6	444	12.5	1.2	16.1	1.4	418	
Pharmacology	24.3	1.3	151	22.5	1.4	24.6	1.5	429	
Physics	20.6	1.6	218	21.0	1.5	21.1	1.5	2,056	
Psychology	15.5	1.1	302	20.0	1.4	15.4	1.1	405	
Social Sciences	9.0	1.2	1,033	10.5	1.5	9.6	1.4	1,780	

What factors have an impact on citations?

Tahamtan et al. (2016) undertook a comprehensive review of the scholarly literature looking at the factors that can increase citations. The wider literature consistently shows that there is quite a range of factors that can influence whether a paper is cited, and that there is variance regarding the strength of impact of various factors across different disciplines.

From their review of 198 papers, the authors categorise 28 factors affecting citations under three headings: those related to the paper, those related to the journal, and those related to the author(s).

Table 3: 28 factors influencing the frequency of citations (Tahamtan et al., 2016)

'Paper' related factors
Quality of paper
Novelty, popularity and interest of subject
Characteristics of fields/subfields of a discipline and study subject/topics
Methodology
Document type
Study design
Characteristics of results, discussions and other sections
Use of figures and appendix in papers
Characteristics of the title, abstract and keywords
Characteristics of references
Length of paper
Age of cited paper (age effect)
Early citation and speed of citation
Accessibility and visibility of papers
'Journal' related factors
Journal impact factor and prestige
Language of journal (paper's language)
Scope and coverage of journal
Form of publication and presentation (conference, journal)
'Author' related factors
Number of authors and co-authorship
Author's reputation and previous citations
Author's academic rank
Self-citation
International and national collaboration of authors
Authors' country
The gender, age and race of authors
Author's productivity
Organizational features of authors
Funding and grants received by authors

Tahamtan et al. (2016) highlight factors such as the **quality of the paper**, the journal impact **metrics**, the **number of authors**, and the visibility and **international collaboration** as stronger predictors for citation than some of the other factors.

Quality of the paper

It can be difficult to assess the quality of a paper, and indeed the number of citations of a paper is often used as a proxy for measuring quality. Tahamtan et al. (2016) cite a number of studies that support the view that there is a positive relationship between paper quality and number of citations. While this is not a given, clearly academic/research staff should aim to produce the highest quality research output possible.

The REF criteria of rigour, significance and originality, along with internal and external peer reviews of research output using these criteria are helpful in terms of enabling staff to see where there research output sits in terms of the level or quality of their work.

Table 4: REF2014 Assessment criteria and level definitions

(http://www.ref.ac.uk/2014/panels/assessmentcriteriaandleveldefinitions/)

Four star	Quality that is world-leading in terms of originality, significance and rigour
Three star	Quality that is internationally excellent in terms of originality, significance and rigour but which falls short of the highest standards of excellence.
Two star	Quality that is recognised internationally in terms of originality, signifi- cance and rigour.
One star	Quality that is recognised nationally in terms of originality, significance and rigour.
Unclassified	Quality that falls below the standard of nationally recognised work. Or work which does not meet the published definition of research for the purposes of this assessment.

The criteria for assessing the quality of outputs were 'originality, significance and rigour'.

To some extent judgements about what criteria apply in measuring quality are subject specific:

Researchers have differing attitudes toward quality, so that some consider accuracy and importance of research as higher quality, while for others it is creativity and novelty (Tahamtan et al., 2016). Citing authors frequently assess quality based on the prestige of a document's journal, authors, institutions, and its citation status (whether it has been already cited by others) (Wang & Soergel, 1998). (Tahamtan & Bornmann, 2018, p 206)

It should also be pointed out that there is also some evidence that suggests that citation is not necessarily related to article quality. For example, Akcan et al. (2013) looked at whether bibliometric indicators such as citation counts were a predictor of methodological research quality in clinical research and found that there were no significant differences in citation counts between high, moderate or low quality articles. Nonetheless, staff should be striving to produce work of the highest possible quality in order to have an impact on their field.

Journal impact metrics (JIF)

Researchers try to publish their papers in journals with high impact factors to increase their visibility and achieve more citations. Publishing papers in journals with high impact factors would result in more citations than publishing in low impact factor journals (Tahamtan et al., 2016, p 1206)

Just as the number of citations a paper has is often considered a proxy for paper quality, so too the journal impact factor is considered as evidence of paper quality. This is because high quality journals have increased visibility, are more likely to be read, and therefore cited. As with the quality of the paper, while most articles on citations and journal impact factors agree that there is a positive relationship between journal impact factor and number of citations, there is also some research that does not support this (Tahamtan et al., 2016, p 1206), that is, good articles can also appear in lower ranked journals.

Quartile 1 (Q1) journals are those where the journal's impact factor is within the top 25% of the JIF distribution in that subject area, and quartile 4 (Q4) means it is within the lowest 25% of the JIF distribution.

While it is not realistic for most researchers to expect every publication to be in a Q1 journal, Bornmann and Marx (2014) suggest that there is an expectation that 25% of the research output of an individual would be in Q1 journals, and Liu, Hu and Gu (2015) argue that the figure could be higher than 25% based on the fact that Q1 journals typically have more issues and publish more articles than journals in the lower quartiles. In addition to journal impact factor staff should also consider journal circulation figures, which is another measure related to journal prestige.

Number of authors

The number of authors of a paper and co-authorship is correlated with the paper's impact so that the more authors a paper has, the more probably it will be cited (Tahamtan et al., 2016, p 1208)

In addition to number of authors, Tahamtan et al. (2016) also list studies that have shown that having co-authors from different disciplines also increases the likelihood of citation. They refer to the concept of 'knowledge diffusion' - in which the more the knowledge is distributed in the scientific network, the more it receives attention and citation (Tahamtan et al., 2016, p 1208). In a study of ecology papers published between 2009 and 2012, Fox et al. (2016: 7717) found that "longer papers, those with more authors, and those that cite more references are cited more." Single-author papers are in decline in many subject areas, and have been since the 1960s. For example, writing about the 'extinction' of the single-authored paper in ecological research, Barlow et al. (2018: 1) state that single-authored papers have fallen from "over 60% of all publications in the 1960s, single-authored papers now make up less than 4%." The optimum number of authors, from a citation perspective, varies across subject areas. Based on a systematic review of disability related fields, Ahmed et al. (2016) recommend that the maximum number of co-authors is four. They found that two co-authors, rather than a single author increased the likelihood of citations, but that as the number of authors increased significantly citation declined. Consistent with other bibliometric research, Ahmed et al. (2016) emphasise that "strategies to improve the citation count vary across disciplines."

International collaboration

Internationally co-authored papers have also been found to have greater 'citation impact' than nationally co-authored papers (Nomaler et al., 2013, p 966). In their citation analysis of scientific papers published since 2000 and co-authored by two or more European countries, Nomaler et al. (2013) found that, on average, the greater the geographical distance between the collaborating counties the higher the number of citations.

According to Tahamtan et al. (2016, p1210): *Highly-cited papers are shown to be the result of teamwork of researchers from different countries.*

As with the previous factors that can influence citation, there is also some conflicting evidence that suggests there are some exceptions for specific subject areas or publications (see Tahamtan et al., 2016, p1210).

Citation impact in different subject areas

Research evidence, such as that by Marx and Bornmann (2014) shows that lower levels of citation can occur in some subjects, for example arts and humanities, because individuals are not publishing in output types that are indexed in bibliographic databases such as Web of Science (WoS) or Scopus (rather than having a lower average number of references per paper).

Open access and increasing visibility

Open access (OA) can effectively increase the accessibility and visibility of scientific articles and thus potentially confer them with citation advantages. (Tang et al., 2017, p1)

A study by Tang et al. (2017) that compared citations for OA and non-OA articles in hybrid ecology journals (that published both gold OA articles and non-OA articles) found that "OA *articles received significantly more citations than non-OA articles.*" Similarly, Piwowar et al. (2018), amongst others, confirms a 'citation advantage' with OA articles. They found "OA *articles receive 18% more citations than average, an effect mainly driven by Green and Hybrid OA.*"

"Once a paper is cited, its visibility is increased and this leads to further citations (Aksnes, 2003). This phenomenon has been named as accumulative advantage" (Tahamtan et al., 2016, 1205).

Open access is part of the 'visibility picture', and as Tahamtan et al. (2016) point out in addition to open access (via whatever route), tweeting about outputs and having them featured in newspaper articles can also increase visibility and citation impact.

How citation factors have had an impact on citations at Ulster, with comparative QUB and UK data

Tables 5 and 6 show the citation impact of scholarly publications at Ulster for the time-periods 2014-2017 and 2008-2013.

Correlations were run on the 2014-2017 data to determine how strong the associations were between the number of citations per publication and the other variables. International collaboration (%) and Outputs in Top Citation Percentiles were very strongly and positively associated with citations per publication (see Table 7).

Table 5: Citations relating to scholarly output 2014-2017 (calculated January 2018)

Subject Area	Ulster University						United Kingdom					Queen's University Belfast								
	Citations per	Field- Weighted Citation Impact	International collaboration (%)	Outputs in Top Citation Percentiles (10%)	Publications in Top Journal Percentiles (10%)	Publications in Top Journal Percentiles (25%)	scholarly output (2014- 2017)	Citations per publication	Field- Weighted Citation Impact	International collaboration (%)	Outputs in Top Citation Percentiles (10%)	p Publications in Top Journa Percentiles (10%)	Publications al in Top Journa Percentiles (25%)	l Citations per publication	Field- Weighted Citation Impact	International collaboration (%)	Outputs in To Citation Percentiles (10%)	p Publications in Top Journa Percentiles (10%)	Publications in Top Journal Percentiles (25%)	scholarly output (2014- 2017)
Overall	3.8	1.2	50.7	17.	4 35.1	62.8	B 3702	2 5.	1 1	6 50.	.6 20.3	8 37.	9 64.	1 6.:	1	1.8 57	.7 23	.7 40.	69.7	/ 10182
Arts and Humanities	1.8	0.9	33.6	7.	1 26.7	53.	9 293	2 1.	7 1.	5 21.	.0 6.	6 29.	2 56.	5 2.0	D	1.6 25	.4 8	.0 36.	59.3	698
Agricultural & Biological Sciences	5.5	1.2	67.1	20.	9 66.1	89.	3 176	6 5.	7 1.	6 68.	.3 25.	9 59.	1 79.	1 6.1	в	2.0 66	.9 29	8 55.	84.0	809
Biochemistry, Genetics & Molecular Biology	5.4	1.2	63.0	26.	5 14.1	49.	1 37	8 8.	4 1	7 63.	.8 34.	1 28.	2 63.	9 9.3	2	1.9 65	.5 35	.2 26.	62.4	4 1192
Business, Management and Accounting	2.4	1.0	39.8	7.	3 18.0	39.	9 23	9 2.	8 1	6 46.	.1 12.	3 28.	0 53.	3 3.:	3	1.7 44	.9 10	.6 28.	56.9	245
Chemical Engineering	6.3	2.3	68.1	35.	30.2	58.	5 110	6 7.	4 1	5 58.	.4 32.	7 37.	1 68.	6.	7	1.8 68	.6 36	.3 33.	76.5	372
Chemistry	6.6	1.6	61.9	32.	8 30.6	65.	3 170	6 8.	1 1	6 62.	.3 34.	9 44.	0 72.	2 6.1	7	1.5 62	.6 34	.7 41.	76.1	1 746
Computer Science	2.4	1.0	45.0	9.	4 12.7	28.	1 620	0 3.	2 1	5 55.	.5 12.	7 19.	6 37.	1 3.1	в	2.3 63	.9 15	.5 25.	43.5	i 1042
Decision Sciences	4.1	1.4	49.1	10.	38.5	71.5	8 53	3 3.	7 1	3 58.	.9 16.	6 26.	7 52.	3 4.3	3	1.8 59	.0 17	.9 27.	55.6	ó 78
Earth and Planetary Sciences	4.3	1.2	73.1	16.	8 32.4	65.	8 119	9 6.	3 1	6 70.	.6 28.	2 36.	4 75.	4 7.:	1	1.6 79	.6 34	.2 24.	85.4	4 725
Economics and Finance	1.2	0.8	37.3	1.	5 17.1	31.	6 134	4 2.	4 1.	5 47.	.5 10.	2 20.	8 49.	5 3.0	D	1.9 55	.2 12	.5 25.	55.1	1 192
Energy	5.8	1.5	54.1	38.	8 54.6	69.	2 13	5 5.	4 1	6 54.	.1 27.	0 42.	6 69.	1 5.3	2	1.8 65	.1 30	.4 53.	79.4	4 335
Engineering	2.9	1.3	46.7	14.	B 27.0	56.	3 483	2 3.	8 1	5 53.	.7 16.	6 32.	7 57.	9 4.	5	1.8 64	.4 20	.6 41.	62.6	5 1631
Environmental Sciences	4.3	1.5	67.6	25.	3 44.5	69.	9 18	5 5.	9 1	8 61.	.2 28.	0 42.	2 69.	2 5.1	В	1.8 66	.1 29	.8 36.	72.5	634
Health Professions	4.7	1.7	61.5	23.	8 48.3	68.	7 14	8 3.	6 1	5 45.	.0 16.	4 32.	4 58.	B 3.:	1	1.1 45	.2 12	.9 29.	67.0) 93
Immunology and Microbiology	4.2	1.4	74.3	31.	5 8.1	41.9	9 74	4 8.	3 1	7 67.	.1 34.	5 21.	3 59.	7 6.1	B	1.7 68	.5 34	.9 22.	54.1	1 324
Materials Science	5.4	1.8	56.3	30.	5 32.4	68.	2 190	0 5.	6 1.	5 61.	.7 24	4 36.	2 63.	1 5.0	5	1.8 68	.3 27	.8 42.	71.1	1 654
Mathematics	1.6	0.8	44.4	6.	4 18.1	24.	5 21/	4 2.	8 1	4 58.	.1 11.	7 23.	4 43.	0 2.1	7	1.7 68	.5 15	.3 31.	43.9	483
Medicine	4.9	1.5	58.3	23.	5 33.0	66.	3 1223	7 6.	2 1	7 48.	.7 23.	7 34.	3 61.	5 8.3	3	2.2 55	.3 28	.0 40.	2 70.4	1 2792
Neuroscience	6.9	1.4	58.9	24.	B 15.9	36.	6 15:	1 7.	1 1	6 61.	.3 31.	6 23.	8 53.	9 5.3	2	1.4 65	.5 26	.9 26.	57.5	i 223
Nursing	4.5	1.3	56.2	19.	9 33.3	65.	1 260	0 3.	3 1	3 31.	.7 14.	3 23.	3 44.	9 2.	5	1.2 37	.6 11	.8 23.	42.9	322
Pharmacology	5.2	1.3	60.0	20.	8 39.7	61.	6 75	5 5.	8 1.	5 58.	.1 26.	8 29.	9 59.	2 5.:	1	1.6 51	.0 30	.0 34.	62.4	4 357
Physics	4.1	. 1.0	61.3	19.	7 36.5	72.	3 150	D 6.	4 1	6 67.	.4 26.	5 29.	5 64.	7 6.	5	1.6 75	.1 29	.3 21.	68.9	1392
Psychology	4.6	1.5	59.6	19.3	8 29.4	62.	3 27	7 3.	8 1	4 44.	.0 17.	6 25.	8 55.	B 3.3	2	1.1 41	.2 14	.9 19.	3 50. 6	i 369
Social Sciences	1.9	0.9	34.7	6.	0 27.4	53.	5 72	3 2.	2 1	5 28.	.4 9.	3 27.	6 53.	5 2.:	1	1.2 28	.9 7	.9 24	51.5	i 1388

Table 6: Citations relating to scholarly output 2008-2013 (calculated April 2018)

Subject Area	Ulster University United Kingdom Queen's University Belfast																			
	Citations per	Field- Weighted Citation	International collaboration (%)	Outputs in Top Citation Percentiles (10%)	Publications in Top Journa Percentiles (10%)	Publications in Top Journal Percentiles (25%)	scholarly output (2008-2013)	Citations per	Field- Weighted Citation	International collaboration (%)	Outputs in Top Citation Percentiles (10%)	Publications in Top Journal Percentiles (10%)	Publications in Top Journal Percentiles (25%)	Citations per	Field- Weighted Citation	International collaboration (%)	Outputs in Top Citation Percentiles (10%)	Publications in Top Journal Percentiles (10%)	Publications i Top Journal Percentiles (25%)	scholarly output (2008-2013)
Overall	16.6	1.4	40.0	17.	0 27.	6 52.9	5.83	5 20.	0 1.	5 40	7 17.	.0 34	0 59.	6 21.2	2 1.	5 47.1	17.9	16.8	64.	13.357
Agricultural & Biological Sciences	19.7	1.3	59.1	L 20.	8 49.	8 72.	7 28	4 25.	8 1.	7 60	9 25.	.4 52	7 74.	4 23.6	5 1.	7 60.5	22.5	47.8	76.	2 1,023
Arts and Humanities	8.1	1.1	21.9	6.	6 25.	2 51.	7 41	0 8.	1 1.	5 14	8 5.	.7 23.	7 49.	2 15.0	5 2.0	0 20.5	5 5.8	33.3	54.	3 943
Biochemistry, Genetics & Molecular Biology	21.9	1.1	52.0	24.	4 10.	9 44.	1 53	3 35.	1 1.	6 54	3 32.	5 27.	1 61.	9 34.7	7 1.0	6 55.1	1 28.7	22.2	61.	1,612
Business, Management and Accounting	11.8	1.3	32.8	9.	9 11.	8 36.	3 40	5 13.	3 1.	5 34	9 11.	.5 16.	0 40.	6 17.1	1.1	B 30.2	16.7	20.9	43.	5 288
Chemical Engineering	35.5	2.1	49.7	26.	0 27.	0 50.	7 18	1 27.	7 1.	6 46	4 25.	.5 32	5 64.	5 29.0) 1.	8 55.5	31.4	26.6	65.	7 181
Chemistry	31.8	1.8	58.1	L 29.	0 27.	4 64.	2 24	1 28.	3 1.	6 52	2 26.	2 37	7 68.	1 30.3	3 1.0	5 59.9	28.3	38.1	73.	5 1,076
Computer Science	8.9	1.2	40.0	5.	9 9.	8 24.	3 1,25	5 12.	2 1.	5 46	0 8	.9 14	6 29.	6 9.1	3 1.3	3 45.5	6.3	14.3	30.	1,414
Decision Sciences	13.5	5 1.6	5 35.8	3 13.	8 17.	4 33.	7 10	9 17.	3 1.	6 47	4 14.	.7 20.	4 38.	6 20.9) 1.	5 43.4	1 25.5	22.1	40.	106
Earth and Planetary Sciences	15.6	5 1.6	5 45.0	11.	7 30.	1 57.	2 18/	0 25.	4 1.	6 63	9 24.	.8 39	0 72.	2 35.1	L 2.3	3 74.2	2 28.8	37.5	83.	7 841
Economics and Finance	6.8	3 1.1	40.3	3.	8 7.	7 22.	3 18	6 12.	4 1.	5 39	8 10.	.3 17.	0 42.	2 13.8	3 1.3	3 40.2	2 11.2	17.5	40.	7 251
Energy	44.5	2.2	44.2	17.	5 32.	2 83.	3 15	8 18.	1 1.	6 44	2 17.	.5 32	2 67.	1 21.9	9 2.0	53.8	3 19.3	47.1	76.	2 316
Engineering	11.8	1.5	i 40.0	10.	5 25.	6 45.	9 84	6 13.	0 1.	5 43	3 10.	.5 25.	6 47.	6 12.3	7 1.	4 44.8	3 10.8	27.2	48.	3 2,055
Environmental Sciences	27.3	1.9	47.9	24.	5 34.	6 62.	1 26	5 24.	5 1.	8 49	9 24.	.1 36.	5 62.	9 24.9) 1.	7 53.9	23.9	33.6	68.	5 783
Health Professions	14.2	1.3	38.1	L 9.	6 24.	5 46.	0 19	7 15.	5 1.	4 33	9 13.	.7 20.	9 50.	6 16.1	1 1.3	3 35.2	2 10.4	19.4	61.	2 125
Immunology and Microbiology	20.3	0.9	68.3	15.	9 5.	8 33.	3 14	5 35.	8 1.	7 60	1 33.	.7 25.	9 61.	2 27.1	1.	5 53.5	5 27.6	18.6	50.	L 456
Materials Science	21.5	5 1.4	42.7	18.	7 23.	5 58.	3 33	7 19.	6 1.	5 52	7 17.	.0 33	2 59.	1 19.1	1 1.4	4 52.5	5 19.5	40.2	63.	2 868
Mathematics	7.2	2 0.8	44.7	7 3.	7 17.	6 27.	35	6 13.	0 1.	5 50	3 8	.5 21	2 37.	5 10.3	3 1.4	4 54.7	7.7	17.5	34.	L 620
Medicine	23.0	1.7	42.6	5 18.	0 26.	4 53.	3 1,512	2 23.	5 1.	7 37	0 20.	.2 31	8 59.	1 28.8	3 2.0	D 45.1	L 24.6	40.0	69.	3,043
Neuroscience	26.0	1.4	52.4	25.	9 17.	9 35.	9 21	2 33.	0 1.	6 52	0 31.	.6 25	1 50.	5 22.8	3 1.3	3 57.2	2 24.3	24.8	48.	7 313
Nursing	15.3	1.6	i 42.1	L 13.	1 26.	9 52.	3 44	4 12.	5 1.	2 20	7 10.	.5 22.	7 41.	0 16.1	I 1.	4 28.2	15.3	30.5	48.	418
Pharmacology	24.3	1.3	53.6	5 26.	5 15.	9 57.	2 15	1 22.	5 1.	4 44	6 21.	.6 26.	2 58.	0 24.6	5 1.9	5 44.5	5 25.9	25.5	56.	5 429
Physics	20.6	5 1.6	56.4	17.	0 29.	0 64.	5 21	8 21.	0 1.	5 60	9 18.	.6 30.	4 61.	7 21.1	1 1.	5 70.5	5 21.5	27.2	63.	3 2,056
Psychology	15.5	5 1.1	40.4	13.	6 17.	5 47.	30	2 20.	0 1.	4 34	7 18.	.3 24.	1 50.	9 15.4	1.	1 34.6	5 14.8	22.1	44.	5 405
Social Sciences	9.0	1.2	2 24.0	6.	3 22.	4 44.	2 1,033	3 10.	5 1.	5 20	8 8	2 23	9 47.	3 9.1	5 1.4	4 20.1	L 7.0	24.2	47.	7 1,780

Table 7: Correlations between citations per publication and other variables (based on the January 20182014-2017 report)

		Ulster	Ulster	QUB
		Citations per publication	Citations per publication	Citations per publication
Field-Weighted Citation	Pearson Correlation	.764**	.620**	.480*
Impact	Sig. (2-tailed)	.000	.003	.018
	Ν	24	21	24
International collaboration	Pearson Correlation	.748**	.720**	.685**
(%)	Sig. (2-tailed)	.000	.000	.000
	N	24	21	24
Outputs in Top Citation	Pearson Correlation	.875**	.988**	.912**
Percentiles	Sig. (2-tailed)	.000	.000	.000
	Ν	24	21	24
Publications in Top Journal	Pearson Correlation	.376	.355	.249
Percentiles (10%)	Sig. (2-tailed)	.070	.114	.240
	Ν	24	21	24
Publications in Top Journal	Pearson Correlation	.517**	.632**	.637**
Percentiles (25%)	Sig. (2-tailed)	.010	.002	.001
	N	24	21	24
scholarly output (2014-2017)	Pearson Correlation	217	_c	.398
	Sig. (2-tailed)	.309		.054
	N	24		24

What can staff, units of assessment (UoAs), and the wider university do to promote research and increase citations?

Any strategy for increasing citations of staff needs to recognise both the factors that can help increase the likelihood of citation and also the discipline-specific context and citation practices within the field in which the researcher operates. Therefore citation expertise needs to be developed and shared at a subject/UoA level. Experienced scholars and research leaders (for example, but not necessarily, Research Directors) will be best placed to do this, in conjunction with library staff who can generate bibliometric reports relating to their unit. Ultimately, however, all academic/research staff need to take responsibility for ensuring they are doing everything they can to improve the citation impact of their work.

The more staff can become 'citation literate' in relation to the practices and factors that influence citation in their field, and the factors that are more consistent in supporting citations of their work, the better placed they will be to take steps to try to increase citations. This will need to be supported at UoA and Faculty levels, by the Library, the Department for Research & Impact and by the PVC for Research & Impact.

The University's Research Librarian and the Department for Research & Impact are pro-actively engaged in providing staff training and resources in the area of citation impact.

A website on Bibliometrics and Citation Analysis has been produced (<u>http://guides.library.ulster.ac.uk/citations</u>). Library workshops were rolled out for academic/research staff, library staff and doctoral students, during Open Access Week in October 2017. These were repeated as part of the Department for Research & Impact's SOARING programme in February 2018. The workshops covered the following:

- The importance of having an accurate researcher profile and steps to correct it if necessary;
- The importance of open access;
- Finding journal impact metrics and other useful metrics;
- Using citation databases to measure and track research impact;
- Identifying impactful collaborators;
- Tips on metadata and writing good practice to improve search rankings with a view to increase citations; and
- Altmetrics.

A number of research support staff and academics have received SciVal training, and information and guidance on journal metrics and benchmark reports have been produced for Research Directors (although with possible changes to staff that will be included in each UoA, this will need to be revisited).

In order to meet the aim of increasing staff citations Ulster University makes the following commitments:

Table 8: Commitments

Establish baseline data	
• Reports need to be generated for each Unit of Assessment, from the Sub-Librar- ian for Research Support Services, so that each UoA will have benchmark data about citation impact for their unit.	 Once UoA membership has been confirmed, following the consultation into Ulster's definition of staff with a significant research responsibility (SRR), UoA level reports for each UoA can be run.
Improve the quality of research output	
• Academic/Research staff: Staff need to focus on research output that are likely to be reviewed as 3 or 4 star. Peer review and feedback from colleagues prior to publica- tion will help with this. Further feedback from an external reviewer post-publica- tion will give staff useful indicators of the level of their work and should be timely enough to enable them to improve the quality of their outputs for subsequent publications should that be necessary.	 At a university level: SOARING training and library workshops More robust/systematic implementation of internal peer review process Communications to Research Directors from the Research and Impact Leadership Team, and from Research Directors to academic/research staff
• UoA : It is important that the UoA is providing appropriate support and guid- ance for staff to ensure that they have a solid understanding of what they need to do in their work to ensure that it will be reviewed as 3 or 4 star within their subject area. Mechanisms should be in place for timely internal (pre-publication) and external (post-publication) reviews of research output.	Research Directors
• Department for Research & Impact/ UoA: There also needs to be university-wide guidance, support, and research training for staff in terms of writing 3 and 4 star research output.	• SOARING

Publish in high quality journals/Q1 journals (Journal impact factor)										
 Provide guides to finding high impact journals for each discipline and communicate to all staff. Academic/Research staff should aim to publish research in high impact interna- tional peer-review journals where possible, or comparable prestige publications for their subject area. 	 Guides for subject areas / UoAs will be produced by the Sub-librarian for Research Support. Research Directors to discuss the reports with staff Individual staff to follow up 									
Co-authorship										
 Where possible, and appropriate, staff should be involved in collaborative research projects which lead to co-authorship of research output. It can also be helpful to co-author(s) from different discipline, and to work with international, rather than local or national partners. PURE can be used to identify potential co-authors. 	 PURE workshops to include guidance on how to identify potential co-authors/col- laborators Research Directors to discuss how in- creased co-authorship could be achieved with staff Individual staff to follow up e.g. through use of PURE 									
Provide staff with information about how to	improve their citations									
 Use the '10 things' on the next page as a 'print out and keep' guide for academic staff and researchers. 	 Department for Research and Impact to produce and circulate this guide 									
Identify and establish citation experts at Fa	culty/UoA level									
 Citation experts at Faculty/UoA will ` provide subject-specific leadership in relation to the citation practices in their subject area with a view to increasing citations in their Facultu/UoA. 	 To be identified by the Department for Research and Impact and the Research and Impact Leadership team. Role to be discussed and rolled out. 									

10 things individual academics/researchers should be doing to increase their citations and the scholarly impact of their work

- Have an ORCID and use it. This ID is a unique identifier and is used to connect an individual to their published output and contributions to research. Register at the <u>ORCID website</u> for an ID. Use it when submitting journal articles. Most online article submission areas will have a space for entering your ORCID ID. Read: <u>Ten reasons to get - and use - an ORCID iD!</u> See the Library Guide <u>Bibliometrics & Citation Analysis: Your Research Profile</u>.
- **2. Co-author with international author(s)** Existing research and Ulster citation analysis shows that articles with international author(s) are more likely to get cited. Potential international co-authors can be identified within PURE.
- **3.** Cite yourself, and the work of other Ulster colleagues, where appropriate. This is an opportunity to promote other relevant published output that you have authored and bring it to the attention of those reading your work. You also have an opportunity to raise the profile of other, relevant Ulster research and give it wider visibility and attention.
- 4. Ensure the journal you are publishing in is indexed in Scopus. Check: <u>https://www.elsevier.com/solutions/scopus/content</u>. See: <u>https://blog.scopus.com/posts/is-a-title-indexed-in-scopus-a-reminder-to-check-before-you-publish</u>. The journal that you are submitting to should be of sufficient quality to be indexed in Scopus.
- 5. Publish in the top ranking journals in your subject. Using <u>Journal Citation Reports</u> go to Select Categories to select the subject area, e.g. Education and Educational Research, the most recent year, and the JIF Quartile (Q1 or Q1 and Q2), then Submit to get the list of journals in the subject area ranked by Journal Impact Factor. Aim to publish in the top Q1 (top quartile/top 25%) of journals in your subject. If that is not possible, then move to the Q2 journals. If you are not able to publish in Q1 or Q2 journals then it is important to consider what you could do to bring the work up to a level where it would be accepted by a Q1 or Q2 journal. Journal impact metrics based on Scopus data are also available from the Journal Metrics website <u>http://scopus.com/source</u>. Existing research, and Ulster citations statistics demonstrates that publishing in the top 25% of journals in a subject increases citations. See the Library Guide <u>Bibliometrics & Citation Analysis: Journal Impact</u>.
- 6. Ensure your work is Open Access. Evidence shows that open access (regardless of route) can increase citation impact. 'Green' open access can be achieved by ensuring you deposit a version of your final accepted author manuscript to the institutional repository (through PURE) so that everyone can access it. In addition, you may also wish to upload to a subject repository for wider visibility. See website on Open Access <u>https://internal.ulster.ac.uk/openaccess/</u> and further information in PURE support website <u>https://www.ulster.ac.uk/internal/research/puresupport</u> as well as <u>http://www.hefce.ac.uk/rsrch/oa/whatis/</u>
- 7. Use your free author prints/e-copies. Share them with other people working in your area (inside and outside the university), who may wish to cite your work in their own writing.

- 8. Promote your publications on social media (Twitter and LinkedIn) and on research discovery sites such as Google Scholar, ResearchGate and Kudos. See the Library Guide <u>Bibliometrics & Citation Analysis: Altmetrics</u>.
- 9. Know what your h-index is and focus on increasing the visibility of, and promoting, your output that will increase your h-index. Look up your h-index in Scopus. (Library > databases > Scopus) Select Author search. Ensure that you have only one Scopus entry. If you have multiple entries (either in different subject areas or from working in different institutions), you can ask Scopus to merge them. See the Library Guide <u>Bibliometrics & Citation Analysis: Researcher Impact</u>.
- 10. Read more about how to increase your citations. See: Tahamtan et al. (2016) Factors affecting number of citations: a comprehensive review of the literature. Scientometrics, 107 (3): 1195-1225 and the Ulster Library Guides on <u>Bibliometrics and Citation Analysis</u>. Get support from the Library: <u>http://guides.library.ulster.ac.uk/citations/support</u>

References

Ahmed, A., Adam, M., Ghafar, N. et al. (2016) Impact of article page count and number of authors on citations in Disability related fields: A systematic review article. *Iranian Journal of Public Health*, 45 (9): 1118-1125. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149465/</u>

Akcan, D., Axelsson, S., Bergh, C. et al. (2013) Methodological quality in clinical trials and bibliometric indicators: no evidence of correlations. *Scientometrics*, 96 (1): 297-303. <u>https://doi.org/10.1007/s11192-013-0949-0</u>

Barlow, J., Stephens, P., Bode, M. et al. (2018) On the extinction of the single-authored paper: The causes and consequences of increasingly collaborative applied ecological research. *Journal of Applied Ecology*, 55 (1): 1-4. <u>https://doi.org/10.1111/1365-2664.13040</u>

Bornmann, L. and Marx, W. (2014) How to evaluate individual researchers working in the natural and life sciences meaningfully? A proposal of methods based on percentiles of citations. *Scientometrics*, 98 (1): 487–509. <u>https://doi.org/10.1007/s11192-013-1161-u</u>

Fox, C., Paine, C. and Sauterey, B. (2016) Citations increase with manuscript length, author number, and references cited in ecology journals. *Ecology and Evolution*, 6: 7717-7726. <u>https://doi.org/10.1002/ece3.2505</u>

Hicks et al (2015) Bibliometrics: The Leiden Manifesto for research metrics, *Nature*, 520: 7548, <u>http://www.nature.com/news/bibliometrics-the-leiden-manifesto-for-research-metrics-1.17351</u>

Liu, W., Hu, G. & Gu, M. (2016) The probability of publishing in first-quartile journals. *Scientometrics*, 106 (3): 1273-1276. <u>https://doi.org/10.1007/s11192-015-1821-1</u>

Marx, W. & Bornmann, L. (2015) On the causes of subject-specific citation rates in Web of Science. *Scientometrics*, 102 (2) : 1823-1827. <u>https://doi.org/10.1007/s11192-014-1499-9</u>

Nomaler, Ö., Frenken, K. and Heimeriks, G. (2013) Do more distant collaborations have more citation impact? *Journal of Infometrics*, 7 (4): 966-971. <u>https://doi.org/10.1016/j.joi.2013.10.001</u>

Piwowar, H., Priem, J., Larivière, V., Alperin, J., Matthias, L. Norlander, B., Farley, A., West, J. and Haustein, S. (2018) The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles. *PeerJ*, 6:e4375; DOI 10.7717/peerj.4375. <u>https://peerj.com/articles/4375/</u>

Tahamtan, I., Safipour Afshar, A. and Ahamdzadeh, K. (2016) Factors affecting number of citations: a comprehensive review of the literature. *Scientometrics*, 107 (3): 1195-1225. <u>https://doi.org/10.1007/s11192-016-1889-2</u>

Tahantan, I. and Bornmann, L. (2018) Core elements in the process of citing publications: Conceptual overview of the literature. *Journal of Infometrics*, 12 (1): 203-216. <u>https://doi.org/10.1016/j.joi.2018.01.002</u>

Tang, M., Bever, J., Yu, F.-H. (2017) Open access increases citations of papers in ecology. *Ecosphere*, 8 (7): e01887.10.1002/ecs2.1887. <u>https://doi.org/10.1002/ecs2.1887</u>

Wilson, J., et al. (2015). The Metric Tide: Report of the Independent Review of the Role of Metrics in Research Assessment and Management. <u>http://www.hefce.ac.uk/media/</u> <u>HEFCE,2014/Content/Pubs/Independentresearch/2015/The,Metric,Tide/2015_metric_tide.pdf</u>

Further reading

Ebrahim et al (2013) Effective strategies for increasing citation frequency, *International Education Studies*, 6 (11), <u>http://eprints.rclis.org/20496/1/30366-105857-1-PB.pdf</u>

Hicks et al (2015) Bibliometrics: The Leiden Manifesto for research metrics, *Nature*, 520: 7548, <u>http://www.nature.com/news/bibliometrics-the-leiden-manifesto-for-research-metrics-1.17351</u>

Tahamtan, I., Safipour Afshar, A. and Ahamdzadeh, K. (2016) Factors affecting number of citations: a comprehensive review of the literature. *Scientometrics*, 107 (3): 1195-1225. <u>https://doi.org/10.1007/s11192-016-1889-2</u>

Wilson, J., et al. (2015). The Metric Tide: Report of the Independent Review of the Role of Metrics in Research Assessment and Management. <u>http://www.hefce.ac.uk/media/HEFCE,2014/</u> Content/Pubs/Independentresearch/2015/The,Metric,Tide/2015 metric tide.pdf

Appendix A: Definitions of key terms used in relation to metrics

The Metrics

The chosen metrics are all 'snowball metrics' – standardised research metrics which have been agreed on and are transparent.

Citation Count

Total citations received by publications of the selected entities. Includes self-citations. All publication types.

Field-Weighted Citation Impact

The ratio of citations received relative to the expected world average for the subject field, publication type and publication year. The world average is 1.0. Includes self-citations. All publication types.

International Collaboration

The extent of international co-authorship. Results show a percentage of all publication types (journal articles, conference papers, reviews, editorials).

Outputs in Top Citation Percentiles

The number of publications of a selected entity that are highly cited, having reached a particular threshold of citations received. Includes self-citations. All publication types. Shows the outputs in the top 10%.

Publications in Top Journal Percentiles

The number of publications of a selected entity that have been published in the world's top journals. Includes self-citations. All publication types. Shows the outputs in the top 10% using CiteScore Percentile (CiteScore is essentially the average citations per document that a title receives over a three-year period. CiteScore Percentile indicates the relative standing of a title in its subject field, and also corrects for the different sizes of subject areas).

Scholarly Output

The number of publications of a selected entity. The type of publications included are journal articles, reviews, conference papers, editorials, short surveys, books and book chapters indexed in Scopus.

Subject Areas

The Subject Area breakdown in the tables corresponds to Scopus' All Science Journal Classification scheme, which allocates each source title (journal, conference proceeding etc) indexed in Scopus to at least one subject category. There are 27 main subject categories, and 334 sub-categories in total. Some titles are allocated more than one subject category.

Pearson Correlation

This is a measure of the strength of a linear association between two variables.

Appendix B: Example of UoA-level citation data 2014-2017 (report run April 2018)

Research Topics

Top 5 Topics, by Scholarly Output

-

	By this Group o	Worldwide				
Торіс	Scholarly Output	Field-Weighted Citation Impact	Prominence percentile			
Great Britain; conflict; divided societies T,9823	16	0.83				
abortion; Great Britain; gender equality T.36431	7	1.40				
PubMed; MEDLINE; search filters T.15938	4	0.88				
Elder Abuse; Violence; elder mistreatment T,1338	3	2.02				
Athens; Democracy; public finance T.5356	3	1.49				

Performance indicators

Outputs in Top Citation Percentiles

Publications in top 10% most cited worldwide

Ulster UoA 20 Social Work & Policy: 5.5%

Publications in Top Journal Percentiles

Publications in top 10% journals by CiteScore Percentile

Ulster UoA 20 Social Work & Policy: 14.4%

International Collaboration

Publications co-authored with researchers in other countries

Ulster UoA 20 Social Work & Policy: 16.4%

Academic-Corporate Collaboration

Publications with both academic and corporate affiliations

Ulster UoA 20 Social Work & Policy: 0.0%

Appendix C: Top 50 cited articles written by Ulster University authors (2014-2017)

The top 50 articles authored/co-authored by Ulster staff, published between 2014-2017, are listed below (from a SciVal report that was run on 13 April 2018 and based on Scopus information). The 50 outputs have been cited a total of 3047 times. It is important to note that this report is accurate on the date that it was run based on the SCiVal data on that date. There may be some minor differences between Scopus and SciVal data on a given date due to differences in when each database is updated with new data.

Figure 1 below shows the range of subject areas of the top 50 outputs. Just over a fifth of the papers (21.1%) are from medicine.

The most cited paper published during this period is:

Banerjee, S., Pillai, S.C., Falaras, P., O'Shea, K.E., Byrne, J.A., Dionysiou, D.D. (2014) New insights into the mechanism of visible light photocatalysis. *Journal of Physical Chemistry Letters*, 5 (15): 2543-2554.

This article has been cited 191 times since it was published in 2014. It has six co-authors – Professor John (Tony) Byrne, School of Engineering, is the Ulster author. The authors are from six different institutions, and four countries (Ireland, Greece, USA, and UK).

What is immediately apparent from the list of 50 (see below) is the extent of co-authorship. Only one paper is single authored. That is no 37 in the list and is by Stephanie McKeown, Emeritus Professor, Biomedical Sciences Research Institute.

Four from the list of fifty have two authors (nos 2, 6, 15, and 48). The co-authors are respectively from a US institution, another UK institution, Ulster University, and an Italian institution.

At the other end of the spectrum, the paper with the most co-authors is item no 9, which has 77 co-authors. Sixteen of the fifty (32%) have ten or more co-authors. The mean number of co-authors is 12.2.

International collaboration is another striking feature and linked to co-authorship. Eighty-two percent of the Top 50 outputs are co-authored with one or more institutions in other countries.

International Collaboration

Publications co-authored with Institutions in other countries UUTop50Cited2014-17:

Thirty-five of the outputs are articles and the remaining 15 are reviews.

The figures below shows that 70% of the journals from the top 50 are in the top 10% journals by CiteScore.

Publications in Top Journal Percentiles

Publications in top 10% journals by CiteScore Percentile

Figure 3

Publications in Top Journal Percentiles 🐲

+ Add to Reporting Export V Sh

Shortcuts V

Share of publications in UUTop50Cited2014-17 that are in the top journals by CiteScore Percentile

Ulster authors are highlighted in bold in the table below. There are 36 authors that are currently Ulster staff and these individuals are highlighted in bold and italics. Six of these 36 staff have more than one item in the list (Professor Cherie Armour, Professor John (Tony) Byrne, Dr Patrick Dunlop, Dr Jeremy Hamilton, Professor Helene McNulty, and Professor Pagona Papakonstantinou). Professor John (Tony) Byrne, School of Engineering, has the greatest number of items in the list (6). His six papers have been cited a total of 435 times.

Twenty of the 36 current staff in the Top 50 list are professors, three are senior lecturers, four are lecturers, two are readers, two are research fellows, three are research associates, and two have other designations.

The subject areas that the 36 staff are working in are as follows:

Biomedical Sciences	9
Engineering	9
Psychology	6
Computing	3
Built Environment	2
Nursing	2
Pharmacology	2
Business & Mgmt	1
Environmental Sci	1
Social Policy	1

Top 50 cited articles written by Ulster University authors (2014-2017)

No	Author(s)	Date	Title	Journal	No of citations	Type of publications
1	Banerjee, S., Pillai, S.C., Falaras, P., O'Shea, K.E., Byrne, J.A ., Dionysiou, D.D.	2014	New insights into the mecha- nism of visible light photocatal- ysis	Journal of Physical Chemistry Letters	191	Article
2	Tognoli, E., Kelso, J .	2014	The Metastable Brain	Neuron	125	Review
3	Guo, F., Li, X., Liang, D., Li, T., Zhu, P., Guo, H., Wu, X., Wen, L., Gu, TP., Hu, B., Walsh, C.P. , Li, J., Tang, F., Xu, GL.	2014	Active and passive demethyl- ation of male and female pro- nuclear DNA in the mammalian zygote	Cell Stem Cell	114	Article
4	Andrade, L.H., Alonso, J., Mneimneh, Z., Wells, J.E., Al-Hamzawi, A., Borges, G., Bromet, E., Bruffaerts, R., De Girolamo, G., De Graaf, R., Florescu, S., Gureje, O., Hinkov, H.R., Hu, C., Huang, Y., Hwang, I., Jin, R., Karam, E.G., Kovess-Masfe- ty, V., Levinson, D., Matschinger, H., O'Neill, S ., Posada-Villa, J., Sagar, R., Sampson, N.A., Sasu, C., Stein, D.J., Takeshima, T., Viana, M.C., Xavier, M., Kessler, R.C.	2014	Barriers to mental health treat- ment: Results from the WHO World Mental Health surveys	Psychological Medicine	107	Article
5	Fang, Y., Qureshi, I., Sun, H., McCole, P., Ramsey, E ., Lim, K.H.	2014	Trust, satisfaction, and online repurchase intention: The moderating role of perceived effectiveness of e-commerce institutional mechanisms	MIS Quarterly: Management Information Systems	98	Article
6	McClean, P.L., Hölscher, C.	2014	Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/ PS1 mice, a model of Alzheim- er's disease	Neuropharma- cology	82	Article

7	Politis, A ., Stengel, F., Hall, Z., Hernán- dez, H., Leitner, A., Walzthoeni, T., Robinson, C.V., Aebersold, R.	2014	A mass spectrometry-based hybrid method for structural modeling of protein complexes	Nature Methods	81	Article
8	Benson, J ., Li, M., Wang, S., Wang, P., Papakonstantinou, P .	2015	Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots	ACS Applied Materials and Interfaces	73	Article
9	Newton, J.N., Briggs, A.D.M., Murray, C. J.L., Dicker, D., Foreman, K.J., Wang, H., Naghavi, M., Forouzanfar, M.H., Ohno, S.L., Barber, R.M., Vos, T., Stanaway, J.D., Schmidt, J.C., Hughes, A.J., Fay, D.F.J., Ecob, R., Gresser, C., McKee, M., Rutter, H., Abubakar, I., Ali, R., Anderson, H.R., Banerjee, A., Bennett, D.A., Bernabé, E., Bhui, K.S., Biryuk- ov, S.M., Bourne, R.R., Brayne, C.E.G., Bruce, N.G., Brugha, T.S., Burch, M., Capewell, S., Casey, D., Chowdhury, R., Coates, M.M., Cooper, C., Critchley, J.A., Dargan, P.I., Dherani, M.K., Elliott, P., Ezzati, M., Fenton, K.A., Fraser, M.S., Fürst, T., Greaves, F., Green, M.A., Gunnell, D.J., Hannigan, B.M. , Hay, R.J., Hay, S.I., Hemingway, H., Larson, H.J., Looker, K.J., Lunevicius, R., Lyons, R.A., Marcenes, W., Mason-Jones, A.J., Matthews, F.E., Moller, H., Murdoch, M.E., Newton, C.R., Pearce, N., Piel, F.B., Pope, D., Rahimi, K., Rodriguez, A., Scarborough, P., Schumacher, A.E., Shiue, I., Smeeth, L., Tedstone, A., Valabhji, J., Williams, H.C., Wolfe, C.D.A., Woolf, A.D., Davis, A.C.J.	2015	Changes in health in England, with analysis by English regions and areas of deprivation, 1990- 2013: A systematic analysis for the Global Burden of Disease Study 2013	The Lancet	73	Review

10	Armour, C ., Tsai, J., Durham, T.A., Char- ak, R., Biehn, T.L., Elhai, J.D., Pietrzak, R.H.	2015	Dimensional structure of DSM-5 posttraumatic stress symptoms: Support for a hybrid Anhedonia and Externalizing Behaviors model	Journal of Psychiatric Research	72	Article
11	Best, P., Manktelow, R., Taylor, B.	2014	Online communication, social media and adolescent well- being: A systematic narrative review	Children and Youth Services Review	71	Article
12	Bruggeman, P.J., Kushner, M.J., Locke, B.R., Gardeniers, J.G.E., Graham, W.G., Graves, D.B., Hofman-Caris, R.C.H.M., Maric, D., Reid, J.P., Ceriani, E., Fernandez Rivas, D., Foster, J.E., Gar- rick, S.C., Gorbanev, Y., Hamaguchi, S., Iza, F., Jablonowski, H., Klimova, E., Kolb, J., Krcma, F., Lukes, P., MacHala, Z., Marinov, I., Mariotti, D ., Mededovic Thagard, S., Minakata, D., Neyts, E.C., Pawlat, J., Petrovic, Z.Lj., Pflieger, R., Reuter, S., Schram, D.C., Schröter, S., Shiraiwa, M., Tarabová, B., Tsai, P.A., Verlet, J.R.R., Von Woedtke, T., Wilson, K.R., Yasui, K., Zvereva, G.	2016	Plasma-liquid interactions: A review and roadmap	Plasma Sources Science and Technology	71	Review
13	Keane, D.A., McGuigan, K.G., Ibáñez, P.F., Polo-López, M.I., Byrne, J.A., Dunlop, P.S.M ., O'Shea, K., Dionysiou, D.D., Pillai, S.C.	2014	Solar photocatalysis for water disinfection: Materials and reac- tor design	Catalysis Science and Technology	69	Review
14	Conlon, J.M ., Mechkarska, M., Lukic, M.L., Flatt, P.R.	2014	Potential therapeutic appli- cations of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, im- munomodulatory, and anti-dia- betic agents	Peptides	64	Review

15	Bikkarolla, S.K., Papakonstantinou, P.	2015	CuCo2O4nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst	Journal of Power Sources	64	Article
16	Karam, E.G., Friedman, M.J., Hill, E.D., Kessler, R.C., McLaughlin, K.A., Petuk- hova, M., Sampson, L., Shahly, V., Angermeyer, M.C., Bromet, E.J., De Girolamo, G., De Graaf, R., Demytten- aere, K., Ferry, F ., Florescu, S.E., Haro, J.M., He, Y., Karam, A.N., Kawakami, N., Kovess-Masfety, V., Medina-Mora, M.E., Browne, M.A.O., Posada-Villa, J.A., Sha- lev, A.Y., Stein, D.J., Viana, M.C., Zarkov, Z., Koenen, K.C.	2014	Cumulative traumas and risk thresholds: 12-month ptsd in the world mental health (WMH) surveys	Depression and Anxiety	62	Article
17	Gribble, P.A., Delahunt, E., Bleakley, C.M ., Caulfield, B., Docherty, C.L., Fong, D.TP., Fourchet, F., Hertel, J., Hiller, C.E., Kaminski, T.W., McKeon, P.O., Ref- shauge, K.M., Van Der Wees, P., Vicen- zino, W., Wikstrom, E.A.	2014	Selection criteria for patients with chronic ankle instability in controlled research: A position statement of the international ankle consortium	Journal of Ath- letic Training	62	Article
18	Banat, I.M ., Satpute, S.K., Cameotra, S.S., Patil, R., Nyayanit, N.V.	2014	Cost effective technologies and renewable substrates for biosurfactants' production	Frontiers in Microbiology	61	Review
19	Hamilton, G.R.C., Sahoo, S.K., Kamila, S., Singh, N., Kaur, N., Hyland, B.W., Callan, J.F.	2015	Optical probes for the detection of protons, and alkali and alka- line earth metal cations	Chemical Society Reviews	61	Article
20	Bailey, L.B., Stover, P.J., McNulty, H ., Fenech, M.F., Gregory, J.F., Mills, J.L., Pfeiffer, C.M., Fazili, Z., Zhang, M., Ueland, P.M., Molloy, A.M., Caudill, M.A., Shane, B., Berry, R.J., Bailey, R.L., Haus- man, D.B., Raghavan, R., Raiten, D.J.	2015	Biomarkers of nutrition for de- velopment-Folate review	Journal of Nutrition	59	Review

21	Kent, L., Reix, P., Innes, J.A., Zielen, S., Le Bourgeois, M., Braggion, C., Lever, S., Arets, H.G.M., Brownlee, K., Bradley, J.M., Bayfield, K., O'Neill, K., Savi, D., Bilton, D., Lindblad, A., Davies, J.C., Sermet, I., De Boeck, K.	2014	Lung clearance index: Evidence for use in clinical trials in cystic fibrosis	Journal of Cystic Fibrosis	57	Review
22	ElMekawy, A., Srikanth, S., Bajrachar- ya, S., Hegab, H.M., Nigam, P.S ., Singh, A., Mohan, S.V., Pant, D.	2015	Food and agricultural wastes as substrates for bioelectrochem- ical system (BES): The synchro- nized recovery of sustainable energy and waste treatment	Food Research International	56	Review
23	Bikkarolla, S.K ., Yu, F., Zhou, W., Jo- seph, P., Cumpson, P., Papakonstantinou, P.	2014	A three-dimensional Mn3O4 network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media	Journal of Materials Chemistry A	55	Article
24	Eftekhari, A ., Jian, Z., Ji, X.	2017	Potassium Secondary Batteries	ACS Applied Materials and Interfaces	55	Review
25	Sitko, K., Bentall, R.P., Shevlin, M ., O'Sullivan, N., Sellwood, W.	2014	Associations between specific psychotic symptoms and specific childhood adversities are mediated by attachment styles: An analysis of the National Comorbidity Survey	Psychiatry Research	54	Article
26	Laird, E., McNulty, H., Ward, M., Hoey, L., McSorley, E., Wallace, J.M.W., Carson, E. , Molloy, A.M., Healy, M., Casey, M.C., Cunningham, C., Strain, J.J .	2014	Vitamin D deficiency is associated with inflammation in older irish adults	Journal of Clinical Endocrinology and Metabolism	52	Article

27	Zhou, M., Politis, A ., Davies, R.B., Liko, I., Wu, KJ., Stewart, A.G., Stock, D., Robinson, C.V.	2014	Ion mobility-mass spectrome- try of a rotary ATPase reveals ATP-induced reduction in con- formational flexibility	Nature Chemistry	52	Article
28	Zhao, C., Pelaez, M., Dionysiou, D.D., Pillai, S.C., Byrne, J.A ., O'Shea, K.E.	2014	UV and visible light activated TiO2photocatalysis of 6-hydrox- ymethyl uracil, a model com- pound for the potent cyanotox- in cylindrospermopsin	Catalysis Today	51	Article
29	Okeyo, G., Chen, L., Wang, H., Sterritt, R.	2014	Dynamic sensor data segmen- tation for real-time knowl- edge-driven activity recognition	Pervasive and Mobile Computing	51	Article
30	Gribble, P.A., Delahunt, E., Bleakley, C ., Caulfield, B., Docherty, C., Fourchet, F., Fong, D.T-P., Hertel, J., Hiller, C., Kamin- ski, T., McKeon, P., Refshauge, K., Van Der Wees, P., Vincenzino, B., Wikstrom, E.	2014	Selection criteria for patients with chronic ankle instability in controlled research: A position statement of the International Ankle Consortium	British Journal of Sports Medicine	48	Article
31	Ballantyne, C.K., Sandeman, G.F., Stone, J.O., Wilson, P .	2014	Rock-slope failure following Late Pleistocene deglaciation on tectonically stable mountainous terrain	Quaternary Science Reviews	47	Article
32	Khoshnood, B., Loane, M ., De Walle, H., Arriola, L., Addor, MC., Barisic, I., Beres, J., Bianchi, F., Dias, C., Draper, E., Garne, E., Gatt, M., Haeusler, M., Klung- soyr, K., Latos-Bielenska, A., Lynch, C., McDonnell, B., Nelen, V., Neville, A.J., O'Mahony, M.T., Queisser-Luft, A., Rankin, J., Rissmann, A., Ritvanen, A., Rounding, C., Sipek, A., Tucker, D., Verellen-Dumoulin, C., Wellesley, D., Dolk, H .	2015	Long term trends in prevalence of neural tube defects in Europe: Population based study	BMJ (Online)	47	Article

33	Chen, L., Nugent, C., Okeyo, G .	2014	An ontology-based hybrid ap- proach to activity modeling for smart homes	IEEE T ransactions on Human-Machine Systems	46	Article
34	Hurst, J.R., Elborn, J.S., De Soyza, A., Bilton, D., Bradley, J ., Brown, J.S., Copeland, F., Duckers, J., Floto, R.A., Foweraker, J., Haworth, C., Hill, A.T., Hubbard, R., Loebinger, M.R., McGuire, A., Muirhead, C.R., Navaratnam, V., Sul- livan, A., Wilkinson, T.M., Winstanley, C.	2015	COPD-bronchiectasis overlap syndrome	European Respiratory Journal	46	Review
35	Kaur, S.J., McKeown, S.R. , Rashid, S.	2016	Mutant SOD1 mediated patho- genesis of Amyotrophic Lateral Sclerosis	Gene	46	Review
36	Fernández-Ibáñez, P., Polo-López, M.I., Malato, S., Wadhwa, S., Hamilton, J.W.J., Dunlop, P.S.M., D'Sa, R., Magee, E ., O'Shea, K., Dionysiou, D.D., Byrne, J.A.	2015	Solar photocatalytic disinfec- tion of water using titanium dioxide graphene composites	Chemical Engineering Journal	45	Article
37	Kessler, R.C., Rose, S., Koenen, K.C., Kar- am, E.G., Stang, P.E., Stein, D.J., Heerin- ga, S.G., Hill, E.D., Liberzon, I., McLaugh- lin, K.A., McLean, S.A., Pennell, B.E., Petukhova, M., Rosellini, A.J., Ruscio, A.M., Shahly, V., Shalev, A.Y., Silove, D., Zaslavsky, A.M., Angermeyer, M.C., Bromet, E.J., De Almeida, J.M.C., De Girolamo, G., De Jonge, P., Demyt- tenaere, K., Florescu, S.E., Gureje, O., Haro, J.M., Hinkov, H., Kawakami, N., Kovess-Masfety, V., Lee, S., Medina-Mo- ra, M.E., Murphy, S.D ., Navarro-Mateu, F., Piazza, M., Posada-Villa, J., Scott, K., Torres, Y., Viana, M.C.	2014	How well can post-traumatic stress disorder be predicted from pre-trauma risk factors? An exploratory study in the WHO World Mental Health Sur- veys	World Psychiatry	45	Article

38	McKeown, S.R.	2014	Defining normoxia, physoxia and hypoxia in tumours-implica- tions for treatment response.	The British journal of radiology	44	Review
39	McGivern, M.R., Best, K.E., Rankin, J., Wellesley, D., Greenlees, R. , Addor, MC., Arriola, L., De Walle, H., Baris- ic, I., Beres, J., Bianchi, F., Calzolari, E., Doray, B., Draper, E.S., Garne, E., Gatt, M., Haeusler, M., Khoshnood, B., Klungsoyr, K., Latos-Bielenska, A., O'mahony, M., Braz, P., McDonnell, B., Mullaney, C., Nelen, V., Queisser-Luft, A., Randrianaivo, H., Rissmann, A., Rounding, C., Sipek, A., Thompson, R., Tucker, D., Wertelecki, W., Martos, C.	2015	Epidemiology of congenital diaphragmatic hernia in Europe: A register-based study	Archives of Disease in Childhood: Fetal and Neonatal Edition	44	Article
40	Kessler, R.C., Sampson, N.A., Berglund, P., Gruber, M.J., Al-Hamzawi, A., Andrade, L., Bunting, B ., Demyttenaere, K., Florescu, S., De Girolamo, G., Gureje, O., He, Y., Hu, C., Huang, Y., Karam, E., Kovess-Masfety, V., Lee, S., Levinson, D., Medina Mora, M.E., Moskalewicz, J., Nakamura, Y., Navarro-Mateu, F., Browne, M.A.O., Pi- azza, M., Posada-Villa, J., Slade, T., Ten Have, M., Torres, Y., Vilagut, G., Xavier, M., Zarkov, Z., Shahly, V., Wilcox, M.A.	2015	Anxious and non-anxious major depressive disorder in the World Health Organization World Men- tal Health Surveys	Epidemiology and Psychiatric Sciences	43	Article
41	Tsai, J., Harpaz-Rotem, I., Armour, C ., Southwick, S.M., Krystal, J.H., Pietrzak, R.H.	2015	Dimensional structure of DSM-5 posttraumatic stress disorder symptoms: Results from the national health and resilience in veterans study	Journal of Clinical Psychiatry	43	Article

42	Van Rooij, A.J., Kuss, D.J., Griffiths, M.D., Shorter, G.W ., Schoenmakers, T.M., Van De Mheen, D.	2014	The (co-)occurrence of problematic video gaming, substance use, and psychosocial problems in adolescents	Journal of Behavioral Addictions	42	Article
43	Boyd, A.R., Rutledge, L ., Randolph, L.D., Meenan, B.J .	2015	Strontium-substituted hy- droxyapatite coatings deposit- ed via a co-deposition sputter technique	Materials Science and Engineering C	41	Article
44	Byrne, J.A., Dunlop, P.S.M., Hamilton, J.W.J. , Fernández-Ibáñez, P., Polo-López, I., Sharma, P.K., Vennard, A.S.M.	2015	A review of heterogeneous photocatalysis for water and surface disinfection	Molecules	41	Article
45	Withers, P.J.A., Jordan, P., May, L., Jarv- ie, H.P., Deal, N.E.	2014	Do septic tank systems pose a hidden threat to water quality?	Frontiers in Ecology and the Environment	40	Review
46	Bean, C.J., De Barros, L., Lokmer, I., Métaxian, JP., O'Brien, G., Murphy, S .	2014	Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes	Nature Geoscience	40	Article
47	Kumar, H., Salminen, S., Verhagen, H ., Rowland, I., Heimbach, J., Bañares, S., Young, T., Nomoto, K., Lalonde, M.	2015	Novel probiotics and prebiotics: Road to the market	Current Opinion in Biotechnology	40	Review
48	Brandoni, C., Renzi, M.	2015	Optimal sizing of hybrid solar micro-CHP systems for the household sector	Applied Thermal Engineering	39	Article
49	Hasan, A., McCormack, S.J., Huang, M.J., Norton, B.	2014	Energy and cost saving of a photovoltaic-phase change materials (PV-PCM) System through temperature regulation and performance enhancement of photovoltaics	Energies	39	Article
50	Hamilton, J.W.J., Byrne, J.A., Dunlop, P.S.M., Dionysiou, D.D., Pelaez, M., O'Shea, K., Synnott, D., Pillai, S.C.	2014	Evaluating the mechanism of visible light activity for N,F-TiO2using photoelectrochemistry	Journal of Physical Chemistry C	38	Article