Funded PhD Opportunity

Identifying biomarkers that may affect diabetes comorbidity

This project is funded by: DfE CAST award in collaboration with Novo Nordisk Research Centre Oxford

Subject: Biomedical Sciences


Summary

It is estimated that 415 million people worldwide suffer from diabetes which will rise to 642 million by 20401.  Ninety percent of cases are type 2 diabetes (T2D).  Treatment of secondary complications/comorbidities accounts for ~75% of the costs associated with T2D in the NHS2.  T2D is associated with hypertension (76%), arthritis (55%), coronary disease (28%), neuropathy (21%) and renal disease (18%)3; 47% of patients suffer 3 or more comorbidities.

Comorbid patients are routinely excluded from clinical trials, limiting our understanding of how treatments affect comorbidities4.  Comorbid patients commonly receive separate, fragmented treatment for each morbidity, with implications for cost and quality of care5.  It is not well understood (i) whether the association between comorbidities is driven by pathophysiological or lifestyle factors and (ii) whether one morbidity is causative of another or whether they share common causes.

There is a vast potential to grow our understanding of comorbidity and develop diagnostics, prognostics and interventions that can improve the quality of care for comorbid patients.  Here, we will focus on the pathophysiology of comorbidity and establish the relationship between T2D and its key comorbidities.

Aim 1 – Profile comorbidity in populations representative of the UK.

* Extract clinical and ‘omics data from UK Biobank (which does not cover Northern Ireland) and Ulster Genome Project, a large patient cohort study conducted by the Northern Ireland Centre for Stratified Medicine

* Prepare multidimensional analysis of comorbidity in T2D and identify significant morbidity combinations.

Aim 2 – Model the pathway biology of the key comorbidities.

* Use published literature, online databases and systems biology tools to map out the known molecular pathways that connect comorbidities.

* Develop and evaluate dynamic systems biology models of relevant molecular pathways.

Aim 3 – Identify genes/proteins/pathways associated with comorbidity development and targets contained therein.

* Undertake a gene set analysis of genome/proteome-wide association studies to determine SNPs/proteins/pathways statistically associated with development of significant morbidity combinations.

* Identify how loss-of-function/gain-of-function SNPs in genes or elevated/reduced protein/pathway activity drive comorbidity development.

* Identify SNPs in genes or binding sites in proteins that can be targeted to counter comorbidity development, therapeutically moderating comorbidity development.

The output of the project will be sets of predictive biomarkers of comorbidity and hypotheses of how these may be targeted therapeutically.  Biomarkers may be patentable and Ulster University (UU) has experience of securing Biomarker Intellectual Property.

The student will be placed at Ulster University (UU, 50% of time) and at Novo Nordisk (NN, 50%), including time at NN Research Centre Oxford (NNRCO) and NN’s headquarters near Copenhagen.  They will experience research in academic and industrial environments, with UU supporting data exploration and systems analysis/modelling (aims 1 and 2) and NNRCO supporting the analysis driving therapeutic target identification (aim 3). Comorbidity is an embryonic biomedical field and all aspects of the project will be novel and can lead to scientific publication.

[1] Ogurtsova K, et al. Diab Res Clin Pract (2017) 128, 40-50.

[2] Hex N, et al. Diabetic Med (2012) 29(7) 855-862.

[3] Kerr EA, et al. J General Internal Med (2007) 22(12), 1635-40.

[4] Gibson DS, et al. Exp Rev Precision Med Drug Dev (2017) 2(3) 147-156.

[5] Wallace E, et al. BMJ (2015) 305:H176.

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • Demonstrable programming skills and mathematical ability.
  • Familiarity with biomedical science is desirable, but not essential.
  • Completion of Masters at a level equivalent to commendation or distinction at Ulster is desirable, but not essential.
  • A background in biomedical science, stratified/personalised medicine, bioinformatics, biomedical engineering, computer science, mathematics, physics or another quantitative science.

Essential criteria

  • To hold, or expect to achieve by 15 August, an Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC) in a related or cognate field.
  • Sound understanding of subject area as evidenced by a comprehensive research proposal

Funding

This project is funded by: DfE CAST award in collaboration with Novo Nordisk Research Centre Oxford

The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 16,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.


Other information


The Doctoral College at Ulster University


Reviews

Profile picture of Kieran O'Donnell

My experience has been great and the people that I have worked with have been amazing

Kieran O'Donnell - 3D printing of biological cells for tissue engineering applications

Watch Video  

Profile picture of Michelle Clements Clements

Completing the MRes provided me with a lot of different skills, particularly in research methods and lab skills.

Michelle Clements Clements - MRes - Life and Health Sciences

Watch Video  

Profile picture of William Crowe

Throughout my PhD I’ve been provided with continuous support and guidance by my supervisors and the staff at the University.I’ve also received many opportunities to further enhance my professional development in the form of teaching experience and presenting my work at conferences which will aid in my pursuit of a career in academia or industry.

William Crowe


Key dates

Submission deadline
Friday 7 February 2020

Interview Date
9 to 20 March 2020


Applying

Apply Online  


Contact supervisor

Dr Steven Watterson


Other supervisors

Related Funded Opportunities

Role of B-vitamins in Epigenetic Modulation of Hypertension

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Engineering plasmid nanoparticles as a platform for delivery of therapeutics

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Diabetes

Subject: Biomedical Sciences

 View details

Graphene family materials as novel chronic wound therapeutics

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

Investigation of microRNA regulation and function in prostate cancer

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Role of novel cardiac biomarkers in cellular senescence

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Oxygen-generating biomaterials for use in wound dressing strategies

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

The regulation of rhamnolipid biosynthesis in Burkholderia thailandensis.

Closing date:
Tuesday 1 September 2020
Subject: Biomedical Sciences

 View details

The production of rhamnolipid biosurfactant by Pseudomonas aeruginosa growing in biofilms.

Closing date:
Tuesday 1 September 2020
Subject: Biomedical Sciences

 View details

Development and evaluation of a web-based interactive teaching tool for Optometrists

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

Genomic Medicine

Subject: Biomedical Sciences

 View details

Novel fatty acid receptors in islet cells as therapeutic targets for diabetes

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Interactome visualisation of ALS using virtual reality

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Stratified Medicine

Subject: Biomedical Sciences

 View details

Novel amphibian skin peptide-analogues for the treatment of type-2 diabetes

Closing date:
Friday 18 September 2020
Subject: Biomedical Sciences

 View details

Blue whiting protein hydrolysates for management of sarcopenia

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Targeted exendin/apelin hybrid peptides for diabetes and obesity therapy.

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Optometry and Vision Science

Subject: Biomedical Sciences

 View details

MRes in Biomedical Sciences

Subject: Biomedical Sciences

 View details

Regulation of glucose metabolism by incretin signalling

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Mental Health Diagnosis using Cognitive Analytics

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Psychology, Psychiatry and Neuroscience

 View details

Naturally-occurring microbial biosynthetic pathways for propane

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

The Growing Problem of Myopia: are spectacles part of the problem?

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Improving the screening and diagnosis of familial hypercholesterolemia

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

Computational approaches to investigate multimorbidity in depression

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

The role of dietary fatty acids and the gut microbiota on autoimmunity

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

A novel therapeutic targeting the inflammasome as a treatment for glaucoma.

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Nutrition and the gut microbiome: impact on brain health in older adults

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Investigation of oral and blood microbiome shifts in patients with depression.

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Vitamin D across the lifecycle to inform nutritional policies

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Epigenomic Profiling of Young Adults with Mental Health Disorders in Northern Ireland

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Investigation of the modifying effects of selenium in the relationship between methylmercury and child development

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Biomedical Sciences

 View details

Towards seeing clearly: does the shape of the eye’s optics affect our focus?

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Changing dietary patterns in the Seychelles and implications for public health

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details