This opportunity is now closed.

Funded PhD Opportunity

Intelligent Data Analytics - novelty detection in critical systems

Subject: Computer Science and Informatics


Summary

Context and Rationale

Novelty detection refers to the process of identifying unforeseen anomalies that deviate from normal behaviours in data. It is very important in real world applications especially involving big data acquired from safety-critical systems, where novel conditions rarely occur and knowledge about a novelty is extremely limited or completely unavailable, whilst in such systems a very large number of data samples of the normal condition are usually available.

This project will develop novelty detection algorithms that make use of the sufficient available normal data to train/construct a reliable model, which in turn can be used to predict if new data is normal or abnormal.

Research Methodology

Existing computational novelty detection techniques can broadly be classified into 5 general categories, depending mainly on the assumptions made about the nature of the training data [1]: (i) probabilistic; (ii) distance-based; (iii) reconstruction-based; (iv) domain-based; and (v) information theoretic techniques. Their corresponding limitations are: (i) little control over inherent variability when the training set’s size is small; (ii) inability to efficiently cope with high-dimensional data; (iii) sensitive to pre-defined number of parameters; (iv) difficulty in choosing appropriate kernel function to control the size of boundary enclosing normal data; and (v) difficulty in associating a novelty score with a test point.

To solve these limitations of the state-of-the-art techniques [2], this project will focus on interdisciplinary fundamental research, such as employing the level set methods [3] and bioinspired computational [4] theories, to propose novel hybrid approaches for novelty surveillance on time-varying data, e.g. in capital market, healthcare, autonomous vehicles and other areas.

Relevance of the study

Artificial intelligence has spurred an era of data analytics that has the potential to revolutionise the way we work and live and many industries are realising that the data they collect have substantial value that can be leveraged to improve products, processes, services and productivity. The project will access real world datasets provided by industrial partners of the Cognitive Analytics Research Laboratory (CARL) or by research collaborators of the CARL team. CARL has its centre of operations in the Intelligent Systems Research Centre but is an Ulster University wide initiative focused on exploiting our track record of research excellence into neuro-inspired cognitive analytics, machine learning and computational intelligence.

The successful candidate should have an excellent mathematical foundation and will work within CARL and collaborate with multiple partners in academia and industry to thoroughly validate new algorithms and to create impactful technologies that can address problems experienced by industry today.


Essential criteria

  • To hold, or expect to achieve by 15 August, an Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC) in a related or cognate field.
  • Experience using research methods or other approaches relevant to the subject domain

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • First Class Honours (1st) Degree
  • Masters at 70%
  • For VCRS Awards, Masters at 75%
  • Publications - peer-reviewed

Funding

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Vice Chancellors Research Studentship (VCRS)

    Full award (full-time PhD fees + DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £15,000 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Bursary (VCRB)

    Part award (full-time PhD fees + 50% DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £7,500 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Fees Bursary (VCRFB)

    Fees only award (PhD fees + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University


Reviews

Profile picture of Adrian Johnston

As Senior Engineering Manager of Analytics at Seagate Technology I utilise the learning from my PhD ever day

Adrian Johnston - PhD in Informatics

Watch Video  

Key dates

Submission deadline
Monday 18 February 2019

Interview Date
19-20 March 2019


Applying

Apply Online  


Campus

Magee campus

Magee campus
A key player in the economy of the north west


Contact supervisor

Dr Xuemei Ding


Other supervisors

Related Funded Opportunities

Context aware Brain Computer Interfaces and Internet of Things (IoT)

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Autonomous Object Recognition for Robots

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Neural Data Science, Computational Neuromodulation, and Metalearning

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Augmented Reality Brain-computer Interface

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Gaining a better understanding of our Planet through Deep Learning-based Data Analytics

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Data Analytic Technologies to Combat Human Trafficking

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Adaptive Learning for Modelling Non-stationary Dynamical Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Computational and Mathematical Modelling of Predator-Prey Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Applying Natural Language Processing to the automated fact checking of legal documents

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Computing

Subject: Computer Science and Informatics

 View details

Deep-learning assisted tele-medicine for the delivery of diabetic retinopathy screening in low- and middle-income countries

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

The impact of the analytical performance of laboratory tests on clinical decision making

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Intelligent Systems

Subject: Computer Science and Informatics

 View details

Sensing human emotion within pervasive environments

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Magic Hands: Non-invasive hand tracking for virtual reality and game based stroke rehabilitation.

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Intelligent Mobility Aids to Promote Physical Activity in Children with Cerebral Palsy

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Nursing and Health

 View details

Network Machine Learning Approach to Financial Crime Detection

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Trusting the uncertainty in machine learning predictions

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Mapping the Brain with Zero Knowledge using advanced AI and Data Analytics

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Neuro Sense: serious games for in-situ autism assessment

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Exploiting Brain Inspired Information Processing in Hardware to Develop Highly Reliable, Always-on Smart Sensor Systems.

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Autonomous Decision Analytics by Integrating Machine Learning and Symbolic Reasoning

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

An Approach for Constructing and Sharing Open Data Sets in Experimental Pervasive Computing

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

RECASE: Robot-Enabled Care system in Smart Environments

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Sensing and Modelling Air Quality for Healthy Living (SMAQ)

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Chatbots for decision support and reporting in healthcare

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

PostCrypt: Data Security for the future

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Enhanced Augmented Reality with Data Engineering and AI for Smart Digital Education

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Education

 View details

AI-enabled Automated Behaviour Analysis for User-centric Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Quantitatively assessment of limb motion utilising wearable sensors in remote rehabilitation

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Towards Trusted Cognitive Intelligence for User-centric Smart Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details