This opportunity is now closed.

Funded PhD Opportunity

Automated approaches to feature detection and classification in benthic imagery

Subject: Geography, Environmental Studies and Archaeology


Summary

Much of our current understanding about the distribution and ecological function of organisms and communities in the marine environment is based on analysis of imagery (Eleftheriou, 2013). Marine imaging techniques cover a wide range of scales and resolutions, from kilometres with acoustic imaging, to sub-centimetric with optical methods (Smith & Rumohr, 2013). In all respects, the number of observations decreases markedly with increasing water depth and distance from shore, meaning that for large areas of the seafloor we have very little information about the nature of the benthic environment (Webb et al., 2010). This lack of baseline data severely limits our ability to sustainably manage natural resources, understand the impacts of our activities and plan for future environmental change (Brierley & Kingsford, 2009).

The development and role of optical imagery in understanding biological processes in the marine environment has been well documented in the scientific literature (Solan et al., 2003; Durden et al., 2016; Shoening et al, 2017). Optical imagery of the benthos (photographs and video) are typically used to collect baseline information and for monitoring communities and fisheries habitats in a non-invasive manner.

These images are often used to identify organisms and characterise substrata in a fairly subjective manner that requires significant processing time. In the last decade, developments in acquisition platforms, imaging technologies and signal processing have transformed the quality and volume of data we now have available, thus motivating the current focus and development of new processing methodologies (eg. Durden et al., 2016; 2017; Gomes-Pereira et al., 2016; Schoening et al., 2017a). These developments represent significant research interest for both static imagery and video data and a wide range of potential applications (Matabos et al., 2017; Wäldchen and Mäder, 2018; Tabak et al., 2018; Schoening et al., 2017b).

This recent research paves the way to introduce computer vision and machine learning for next generation environmental monitoring which will form the basis of this PhD proposal. The ability to develop a framework that could automate, or semi-automate the process of feature detection and extraction combined with image classification in a standardised manner would be a significant advance to the field of marine ecology.  Hence, the aim of this project is to explore approaches for automated classification of benthic images and to examine the ecological validity of machine learning approaches to classification.

This PhD project involves researchers from the School of Geography and Environmental Sciences and the Intelligent Systems Research Centre at Ulster University, together with external partners at the Scottish Association for Marine Sciences and the University of Limerick. It will build on a framework of existing work performed in all research centres with a focus on feature extraction and classification for benthic imagery. Classification of such images is vital for biodiversity maintenance, environmental monitoring and fisheries management and aligns closely with Ulster University’s strategic research themes of sustainability and social renewal.

References

Brierley & Kingsford, 2009. DOI: 10.1016/j.cub.2009.05.046 | Durden et al, 2016. Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding. Oceanography and Marine Biology: An Annual Review, 54:1-72 | Durden et al., 2017. DOI: 10.1002/lob.10213 | Eleftheriou (Ed.), 2013. DOI: 10.1002/9781118542392 | Solan et al., 2003. DOI: 10.1016/S0022-0981(02)00535-X | Matabos et al., 2017. DOI: 10.1111/2041-210X.12746 | Smith & Rumohr, 2013. DOI: 10.1002/9781118542392 | Schoening et al., 2017a. 10.3389/fmars.2016.00059 | Schoening et al., 2017b. DOI: 10.1038/s41598-017-13335-x | Wäldchen & Mäder, 2018. DOI: 10.1111/2041-210X.13075 | Webb et al., 2010. DOI: 10.1371/journal.pone.0010223 |


Essential criteria

  • Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC)
  • A comprehensive and articulate personal statement

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • First Class Honours (1st) Degree
  • Masters at 65%
  • Research project completion within taught Masters degree or MRES
  • Experience using research methods or other approaches relevant to the subject domain
  • Work experience relevant to the proposed project
  • Experience of presentation of research findings

Funding

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Vice Chancellors Research Studentship (VCRS)

    Full award (full-time PhD fees + DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £15,000 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Bursary (VCRB)

    Part award (full-time PhD fees + 50% DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £7,500 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Fees Bursary (VCRFB)

    Fees only award (PhD fees + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University


Reviews

Completing the MRes provided me with a lot of different skills, particularly in research methods and lab skills.

Michelle Clements Clements - MRes - Life and Health Sciences

Watch Video  

I would highly recommend Ulster University as you get so much support.  Coleraine is a beautiful town and the people are so friendly. It was a really positive experience.

Carin Cornwall - PhD Environmental Sciences

Watch Video  

Key dates

Submission deadline
Monday 18 February 2019

Interview Date
w/c 18 March 2019


Applying

Apply Online  


Campus

Coleraine campus

Coleraine campus
Our coastal and riverside campus focussing on science and health


Contact supervisor

Dr Chris McGonigle


Other supervisors

Related Funded Opportunities

Geography and Environmental Sciences

Subject: Geography, Environmental Studies and Archaeology

 View details

MRes in Geography & Environmental Sciences

Subject: Geography, Environmental Studies and Archaeology

 View details