PhD Study : Development of novel smart scaffolds as potential strategies for skin wound healing

Apply and key information  

Summary

Many of the major functions in cells and organs of the human body are controlled by electrical signals (i.e nerve repair, bone formation and wound healing). In recent years, the potential for harnessing electric signals in modulating cell growth, proliferation and differentiation has inspired the development of several electroactive biomaterials. Electroactive polymers (EAPs) are polymers that undergo shape and/or dimensional change in response to an applied electrical field. The interest in EAPs is increased because these “smart materials” have the potential to serve as unique candidates for developing tissue-like scaffolds capable of directing cell fate and promoting tissue healing.

However, most of the current EAPs-based scaffolds are not appropriate for tissue regeneration, mainly because they require external power source or additional surface electrodes for conducting electrical stimulation. Hence, the development of novel EAPs with improved adaptability to the specific tissue is of paramount importance. Among the diverse applications in the biomedical field, the use of EAPs as skin dressings is a field of pressing need. Primarily because chronic non-healing wounds represent one of the most crucial and unmet healthcare problem.

Only in the UK, 2.2 million patients suffer from chronic wounds (such as diabetic foot ulcers, venous leg ulcers and pressure ulcers), which lead to an annual cost of ~£6 billion. At present, wound care treatments are strongly diversified: dressings, wound closure products, interventional wound healing, and also emerging therapies based on fibrous skin-like substitutes. However, the findings that 43% of wounds do not heal within a year highlight that current treatments are ineffective in a significant sub-population of patients, representing an unmet need.

With a view towards the new generation of EAP-based materials, this proposal aims to design and develop a smart scaffold able to promote skin wound healing. Such device will be based on a blend of two different polymers, of which at least one is an EAP, and it will be produced via electrospinning technology.

With respect to conventional scaffolds, this novel system will provide additional clues to stimulate suitable biological cell activities and supporting the development of suitable microenvironments for wound healing applications. A wide range of methods will be required to achieve the final aim of this multidisciplinary study, including: biomaterial synthesis, electrospinning technology, mechanical and physico-chemical characterisation, conductivity testing, and biological in vitro assessment. This will provide excellent training in a wide variety of important research techniques.

Essential criteria:

- Upper Second Class Honours (2:1) Degree in one of the following Engineering disciplines: Mechanical, Electronic, Biomedical or Chemical Engineering;

- Experience using research methods or other approaches relevant to the subject domain.

Related references:

1. Balint, R., Cassidy, N.J., Cartmell, S.H., 2014. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia 10, 2341–2353.

2. Ning, C., Zhou, Z., Tan, G., Zhu, Y., Mao, C., 2018. Electroactive polymers for tissue regeneration: Developments and perspectives. Progress in Polymer Science 81, 144–162.

3. Rajabi, A.H., Jaffe, M., Arinzeh, T.L., 2015. Piezoelectric materials for tissue regeneration: A review. Acta Biomaterialia 24, 12–23.

Essential criteria

Applicants should hold, or expect to obtain, a First or Upper Second Class Honours Degree in a subject relevant to the proposed area of study.

We may also consider applications from those who hold equivalent qualifications, for example, a Lower Second Class Honours Degree plus a Master’s Degree with Distinction.

In exceptional circumstances, the University may consider a portfolio of evidence from applicants who have appropriate professional experience which is equivalent to the learning outcomes of an Honours degree in lieu of academic qualifications.

Funding and eligibility

The University offers the following levels of support:

Vice Chancellors Research Studentship (VCRS)

The following scholarship options are available to applicants worldwide:

  • Full Award: (full-time tuition fees + £19,000 (tbc))
  • Part Award: (full-time tuition fees + £9,500)
  • Fees Only Award: (full-time tuition fees)

These scholarships will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance) and will provide a £900 per annum research training support grant (RTSG) to help support the PhD researcher.

Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Please note: you will automatically be entered into the competition for the Full Award, unless you state otherwise in your application.

Department for the Economy (DFE)

The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £19,000 (tbc) per annum for three years (subject to satisfactory academic performance).

This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

  • Candidates with pre-settled or settled status under the EU Settlement Scheme, who also satisfy a three year residency requirement in the UK prior to the start of the course for which a Studentship is held MAY receive a Studentship covering fees and maintenance.
  • Republic of Ireland (ROI) nationals who satisfy three years’ residency in the UK prior to the start of the course MAY receive a Studentship covering fees and maintenance (ROI nationals don’t need to have pre-settled or settled status under the EU Settlement Scheme to qualify).
  • Other non-ROI EU applicants are ‘International’ are not eligible for this source of funding.
  • Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Due consideration should be given to financing your studies. Further information on cost of living

The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 18 February 2019
12:00AM

Interview Date
March 2019

Preferred student start date
September 2019

Applying

Apply Online  

Other supervisors