PhD Study : Low-complexity Detection Algorithms for Faster-than-Nyquist Signaling

Apply and key information  

Summary

There is an increasing demand to improve the spectral efficiency (SE) to support gigabit experience to mobile users in future 5G and beyond communications or to support up to 1 Tbps data rates in long-haul optical communications. To achieve such goal, there is a need to explore novel and innovative technologies that can be implemented for single or multicarrier optical or wireless communication systems to improve the SE. The SE measured in bits/sec/Hz, is defined as the number of information bits carried per a given time and bandwidth and it can be improved by either changing the transmission time or bandwidth.

However, the transmission time and bandwidth are related in the sense that one can be traded for the other. Additionally, they are limited and costly resources that in most cases we cannot afford to change them. Another possible way to increase the SE is to adopt higher order modulation, i.e., M-ary modulation; however, to increase the SE by 1, this will be at the expense of almost doubling the signal-to-noise ratio (SNR)—to maintain the same error probability—at higher values of M. Conventional digital communication systems use orthogonal pulses (with respect to shifts by integer number of symbol duration) for transmission in time-domain to avoid having intersymbol interference (ISI).

The roots of such design principles stem from the Nyquist theorem and the optimal detection process is simple and can be achieved on a symbol-by-symbol basis. Faster-than-Nyquist (FTN) signaling is a novel transmission technique that intentionally violates the Nyquist limit and transmits pulses at a rate beyond the Nyquist limit, and hence, ISI is unavoidable.The FTN signaling concept has been extended to the frequency-domain as well to improve the SE of multi-carrier systems.

Our objective in this project is to design low-complexity detection algorithms for FTN signalling in both time-domain single carrier communications and frequency-domain multicarrier communication systems. In general, and as a binary/non-binary sequence estimation problem in the presence of interference, maximum likelihood (ML) or maximum a posteriori probability (MAP) estimations can be used to find the optimal transmit sequence; however, their prohibitive computational complexity prevents practical implementations.

Our approach to tackle such problem is based on a key observation that the interference at the receivers of FTN signalling is different from its counterpart resulting from the propagation through dispersive channel as it has a special trellis structure that is known at the transmitter. Such a structure can be exploited to design precoding techniques at the transmitter and/or reduce the complexity of ML/MAP estimation or their approximations at the receivers.

Please note the student working on this project is expected to have a communication theory and signal processing background and very good experience in one of the programming languages. The student will work in an office environment and use programming language, e.g., Matlab, on a daily basis to test the developed theory.

Essential criteria

Applicants should hold, or expect to obtain, a First or Upper Second Class Honours Degree in a subject relevant to the proposed area of study.

We may also consider applications from those who hold equivalent qualifications, for example, a Lower Second Class Honours Degree plus a Master’s Degree with Distinction.

In exceptional circumstances, the University may consider a portfolio of evidence from applicants who have appropriate professional experience which is equivalent to the learning outcomes of an Honours degree in lieu of academic qualifications.

Funding and eligibility

The University offers the following levels of support:

Vice Chancellors Research Studentship (VCRS)

The following scholarship options are available to applicants worldwide:

  • Full Award: (full-time tuition fees + £19,000 (tbc))
  • Part Award: (full-time tuition fees + £9,500)
  • Fees Only Award: (full-time tuition fees)

These scholarships will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance) and will provide a £900 per annum research training support grant (RTSG) to help support the PhD researcher.

Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Please note: you will automatically be entered into the competition for the Full Award, unless you state otherwise in your application.

Department for the Economy (DFE)

The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £19,000 (tbc) per annum for three years (subject to satisfactory academic performance).

This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

  • Candidates with pre-settled or settled status under the EU Settlement Scheme, who also satisfy a three year residency requirement in the UK prior to the start of the course for which a Studentship is held MAY receive a Studentship covering fees and maintenance.
  • Republic of Ireland (ROI) nationals who satisfy three years’ residency in the UK prior to the start of the course MAY receive a Studentship covering fees and maintenance (ROI nationals don’t need to have pre-settled or settled status under the EU Settlement Scheme to qualify).
  • Other non-ROI EU applicants are ‘International’ are not eligible for this source of funding.
  • Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Due consideration should be given to financing your studies. Further information on cost of living

The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 18 February 2019
12:00AM

Interview Date
March 2019

Preferred student start date
September 2019

Applying

Apply Online  

Other supervisors