This opportunity is now closed.

Funded PhD Opportunity

Therapeutic importance of medical cannabis and cannabinoid receptors in Type 2 Diabetes

This project is funded by: GreenLight Medicines

Subject: Biomedical Sciences


Summary

Diabetes represents one of the world's major healthcare problems with 285 million reported cases of diabetes worldwide, a figure projected to increase to 439 million by 2030. As the prevalence of type 2 diabetes has risen dramatically, there is an urgent need to develop new approaches for disease treatment. The alarming increase in diabetes incidence coupled with the failure of established anti-diabetic drugs to tightly manage the disease, demonstrates the market need for new anti-diabetic approaches. Approaches to counteract defective insulin secretion and low beta cell mass in diabetes are key in developing therapeutic strategies. In recent years, therapies that target the actions of glucagon-like peptide-1 (GLP-1) which stimulate insulin secretion through activation of G-protein coupled receptors (GPCRs) have been successful. This has resulted in substantial interest in targeting other islet GPCRs for diabetic therapies [1-5].

The Diabetes Research Laboratory at Ulster University has identified the anti-diabetic potential of a cannabinoid receptor, and in collaboration with GreenLight Medicines, the student will carry out a comprehensive and rewarding series of studies ranging from laboratory studies through to clinical translational research. Cannabinoid receptors are activated by cannabinoids, compounds which are produced naturally inside the body (endocannabinoids) or introduced into the body as medicinal cannabis or a related synthetic compound. The most common source of cannabinoids is the Cannabis plant. The recent recognition by the UK government that cannabis has medicinal value and should be available to the public is an important step for the development of cannabis studies.

The aim of this research study is to determine the therapeutic applicability of a range of cannabinoids which act through a GPCR receptor and the beneficial effects in diabetes. GPCRs have become the target of approximately 50% of recently developed pharmaceutical agents. Our published work demonstrates that GPCRs activated by endogenous and synthetic agonists in islets and intestinal cells exhibit insulinotropic and glucose lowering activity [1-5]. This research project represents an important step in the validation of this islet target for improved diabetes treatment and care.

This PhD project is a collaborative project between Ulster University and industry. The specific project aims: (i)To determine the therapeutic applicability of a range of cannabinoids using pancreatic and intestinal cell lines and knockout cell lines (ii)To determine the mechanisms of action responsible for metabolic effects using GPCR knockout cell lines (iii)To determine the anti-diabetic effects of GPCR cannabinoids in pre-clinical and clinical studies

References:

1.Moran BM, Flatt PR, McKillop AM. (2016) Acta Diabetol. 53(2):177-88

2.Moran BM, McKillop AM, O'Harte FPM. (2016). Curr Opin Pharmacol. 31:57-62.

3.McKillop AM, Moran BM, Abdel-Wahab YH, Gormley NM, Flatt PR. (2016) Diabetologia 59(12):2674-2685.

4.Moran BM, Abdel-Wahab YH, Flatt PR, McKillop AM. (2014). Diabetes Obes Metab. 16:1128-39.

5.Moran BM, Abdel-Wahab YH, Vasu S, Flatt PR, McKillop AM. (2016) Acta Diabetol 53(2):279-93.


Essential criteria

  • To hold, or expect to achieve by 15 August, an Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC) in a related or cognate field.
  • Sound understanding of subject area as evidenced by a comprehensive research proposal

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • First Class Honours (1st) Degree
  • Masters at 65%
  • Research project completion within taught Masters degree or MRES
  • Practice-based research experience and/or dissemination
  • Experience using research methods or other approaches relevant to the subject domain
  • Work experience relevant to the proposed project
  • Publications - peer-reviewed
  • Experience of presentation of research findings
  • A comprehensive and articulate personal statement
  • Relevant professional qualification and/or a Degree in a Health or Health related area

Funding

This project is funded by: GreenLight Medicines

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University


Reviews

Profile picture of Kieran O'Donnell

My experience has been great and the people that I have worked with have been amazing

Kieran O'Donnell - 3D printing of biological cells for tissue engineering applications

Watch Video  

Profile picture of Michelle Clements Clements

Completing the MRes provided me with a lot of different skills, particularly in research methods and lab skills.

Michelle Clements Clements - MRes - Life and Health Sciences

Watch Video  

Profile picture of William Crowe

Throughout my PhD I’ve been provided with continuous support and guidance by my supervisors and the staff at the University.I’ve also received many opportunities to further enhance my professional development in the form of teaching experience and presenting my work at conferences which will aid in my pursuit of a career in academia or industry.

William Crowe


Key dates

Submission deadline
Monday 18 February 2019

Interview Date
Weeks commencing 11, 18, 25 March 2019


Applying

Apply Online  


Campus

Coleraine campus

Coleraine campus
The feeling of community at our Coleraine campus makes for a warm and welcoming student experience.


Contact supervisor

Professor Aine McKillop


Other supervisors

Related Funded Opportunities

Role of B-vitamins in Epigenetic Modulation of Hypertension

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Engineering plasmid nanoparticles as a platform for delivery of therapeutics

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Diabetes

Subject: Biomedical Sciences

 View details

Graphene family materials as novel chronic wound therapeutics

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

Investigation of microRNA regulation and function in prostate cancer

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Role of novel cardiac biomarkers in cellular senescence

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Oxygen-generating biomaterials for use in wound dressing strategies

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

Development and evaluation of a web-based interactive teaching tool for Optometrists

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

The production of rhamnolipid biosurfactant by Pseudomonas aeruginosa growing in biofilms.

Closing date:
Tuesday 1 September 2020
Subject: Biomedical Sciences

 View details

The regulation of rhamnolipid biosynthesis in Burkholderia thailandensis.

Closing date:
Tuesday 1 September 2020
Subject: Biomedical Sciences

 View details

Naturally-occurring microbial biosynthetic pathways for propane

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Novel fatty acid receptors in islet cells as therapeutic targets for diabetes

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Genomic Medicine

Subject: Biomedical Sciences

 View details

Interactome visualisation of ALS using virtual reality

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Stratified Medicine

Subject: Biomedical Sciences

 View details

Novel amphibian skin peptide-analogues for the treatment of type-2 diabetes

Closing date:
Friday 18 September 2020
Subject: Biomedical Sciences

 View details

Blue whiting protein hydrolysates for management of sarcopenia

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Targeted exendin/apelin hybrid peptides for diabetes and obesity therapy.

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Optometry and Vision Science

Subject: Biomedical Sciences

 View details

MRes in Biomedical Sciences

Subject: Biomedical Sciences

 View details

Regulation of glucose metabolism by incretin signalling

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Mental Health Diagnosis using Cognitive Analytics

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Psychology, Psychiatry and Neuroscience

 View details

Identifying biomarkers that may affect diabetes comorbidity

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

The Growing Problem of Myopia: are spectacles part of the problem?

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Improving the screening and diagnosis of familial hypercholesterolemia

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

Computational approaches to investigate multimorbidity in depression

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

The role of dietary fatty acids and the gut microbiota on autoimmunity

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

A novel therapeutic targeting the inflammasome as a treatment for glaucoma.

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Nutrition and the gut microbiome: impact on brain health in older adults

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Investigation of oral and blood microbiome shifts in patients with depression.

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Vitamin D across the lifecycle to inform nutritional policies

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Epigenomic Profiling of Young Adults with Mental Health Disorders in Northern Ireland

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Investigation of the modifying effects of selenium in the relationship between methylmercury and child development

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Biomedical Sciences

 View details

Towards seeing clearly: does the shape of the eye’s optics affect our focus?

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Changing dietary patterns in the Seychelles and implications for public health

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details