This opportunity is now closed.

Funded PhD Opportunity

Autonomous Smart Patches: New Approaches to Controlled Drug Delivery

Subjects: Engineering and Biomedical Sciences


Summary

Background:

Transdermal drug patches have often been heralded as a pain free approach to the delivery of therapeutic agents and there has been considerable commercial interest with the availability of over the counter (nicotine) and prescription (fentanyl) products. Drug delivery is typically achieved through passive diffusion across the stratum corneum into the underlying microcirculation but the hydrophobicity of the skin barrier restricts the drug candidates to small molecular weight lipophilic species. Once applied, the dosage cannot be modulated other than simply removing the patch. Microneedles can offer a means of painlessly breaching the skin and allow the transport of polar/large molecular material (i.e. insulin).

While there have been extensive developments within this field, the majority remain limited by a lack of control over the release dynamics. The evolution of systems offering smarter, stimuli reactive, release has gathered pace with mechanical, electrical and light actuation systems coming to the fore.

Aim:

The proposed project will build on existing microneedle expertise within the group but incorporate the innovative element of electronic control over the timing, extent and frequency of reagent release. This would eventually set the foundations for an autonomous patch capable of administering personalised drug therapies.

Methodology:

The strategy exploits a composite microneedle structure comprising cellulose acetate phthalate (CAP) and a phase change material based on poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA). The outer CAP material provides structural integrity and piercing capability while the inner PEG-PLGA composite is key to the delivery control. The latter is solid at physiological temperatures but transitions to a liquid state at 40oC. Thus, integration of the microneedle composite with a small resistive heater which can be controlled via Bluetooth from a phone (Figure 1) could thereby enable more precise control over the release profile.

Proposed Plan:

Year 1. Production/characterisation of the composite microneedles and their thermal release properties using model drugs in simulated conditions. Optimisation of yield through investigating transfer from the MN baseplate through the needles.

Year 2. Establish appropriate models through which to evaluate MN delivery and transdermal yield through and within skin. Validation of device operation.

Year 3. Optimisation of patch constituents and technology demonstration through the controlled autonomous delivery (single/repetitive dosing) of micronutrients, analgesics and hormones. A key advantage of the proposed strategy is the ability to have a multi-needle patch enabling repetitive dosing over a prolonged period and which would eventually offer closed loop combination therapy dosing. Autonomous control through a smart phone app directly addresses issues of therapy compliance and would be particularly useful in contexts such as:  nutrition, chronic pain, cancer and dementia where regularity of dosing is critical for improving outcomes.

Upper Second Class Honours (2:1) Degree from a UK institution (overseas award deemed equivalent via UK NARIC) in Biochemistry, Biomolecular Sciences, Biomedical Engineering.


Essential criteria

  • To hold, or expect to achieve by 15 August, an Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC) in a related or cognate field.
  • Experience using research methods or other approaches relevant to the subject domain

Funding

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 18 February 2019

Interview Date
March 2019


Applying

Apply Online  


Campus

Jordanstown campus

Jordanstown campus
The largest of Ulster's campuses


Contact supervisor

Professor James Davis


Other supervisors

Related Funded Opportunities

Computer Modelling of Phase Change in Monotectic Metal Alloys

Closing date:
Friday 7 February 2020
Subject: Engineering

 View details

Role of B-vitamins in Epigenetic Modulation of Hypertension

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Engineering plasmid nanoparticles as a platform for delivery of therapeutics

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Investigation of microRNA regulation and function in prostate cancer

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Role of novel cardiac biomarkers in cellular senescence

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Oxygen-generating biomaterials for use in wound dressing strategies

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

The production of rhamnolipid biosurfactant by Pseudomonas aeruginosa growing in biofilms.

Closing date:
Tuesday 1 September 2020
Subject: Biomedical Sciences

 View details

Graphene family materials as novel chronic wound therapeutics

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

Naturally-occurring microbial biosynthetic pathways for propane

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Diabetes

Subject: Biomedical Sciences

 View details

The regulation of rhamnolipid biosynthesis in Burkholderia thailandensis.

Closing date:
Tuesday 1 September 2020
Subject: Biomedical Sciences

 View details

Gold Nanoparticles for Targeted Prostate Cancer Treatment

Closing date:
Friday 7 February 2020
Subject: Engineering

 View details

Novel fatty acid receptors in islet cells as therapeutic targets for diabetes

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Additive Manufacturing of Functionally Graded Structures

Closing date:
Friday 7 February 2020
Subject: Engineering

 View details

Interactome visualisation of ALS using virtual reality

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Development and evaluation of a web-based interactive teaching tool for Optometrists

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

Engineering

Subject: Engineering

 View details

An interdisciplinary approach to tackling deep bone infections

Closing date:
Friday 7 February 2020
Subject: Engineering

 View details

Blue whiting protein hydrolysates for management of sarcopenia

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Targeted exendin/apelin hybrid peptides for diabetes and obesity therapy.

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Genomic Medicine

Subject: Biomedical Sciences

 View details

Stratified Medicine

Subject: Biomedical Sciences

 View details

Novel amphibian skin peptide-analogues for the treatment of type-2 diabetes

Closing date:
Friday 18 September 2020
Subject: Biomedical Sciences

 View details

Self-powered point of care diagnostics

Closing date:
Friday 7 February 2020
Subject: Engineering

 View details

Regulation of glucose metabolism by incretin signalling

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Mental Health Diagnosis using Cognitive Analytics

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Psychology, Psychiatry and Neuroscience

 View details

Low Temperature Plasma Treatment of Cancer: Towards In-Vivo Implementation

Closing date:
Friday 7 February 2020
Subject: Engineering|Biomedical Sciences

 View details

Optometry and Vision Science

Subject: Biomedical Sciences

 View details

MRes in Biomedical Sciences

Subject: Biomedical Sciences

 View details

The Growing Problem of Myopia: are spectacles part of the problem?

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Identifying biomarkers that may affect diabetes comorbidity

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Improving the screening and diagnosis of familial hypercholesterolemia

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Computer Science and Informatics

 View details

Multifunctional structural supercapacitors for electric transportation

Closing date:
Friday 7 February 2020
Subject: Engineering

 View details

Computational approaches to investigate multimorbidity in depression

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

The role of dietary fatty acids and the gut microbiota on autoimmunity

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

A novel therapeutic targeting the inflammasome as a treatment for glaucoma.

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

New metal and metal oxides nanomaterials for solar energy harvesting

Closing date:
Friday 7 February 2020
Subject: Engineering

 View details

Nutrition and the gut microbiome: impact on brain health in older adults

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Investigation of oral and blood microbiome shifts in patients with depression.

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Vitamin D across the lifecycle to inform nutritional policies

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Epigenomic Profiling of Young Adults with Mental Health Disorders in Northern Ireland

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Investigation of the modifying effects of selenium in the relationship between methylmercury and child development

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences|Biomedical Sciences

 View details

Towards seeing clearly: does the shape of the eye’s optics affect our focus?

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details

Changing dietary patterns in the Seychelles and implications for public health

Closing date:
Friday 7 February 2020
Subject: Biomedical Sciences

 View details