This opportunity is now closed.

Funded PhD Opportunity

A New Approach to Spectral Data Analysis for Food Quality Control

Subject: Computer Science and Informatics


Summary

Pushing the technological frontiers in the battle against food crime, this project aims to implement an accurate yet efficient, cost-effective and easily deployable quantitative solution for food fraud detection and the screening of agri-food samples which combines the use of portable sensors and machine learning. The adulteration of food is one of the fastest growing economic crimes; the deliciously deceptive foods we eat may be packed with things that are not supposed to be there—a practice known as “food fraud”. Spectroscopy is a very suitable means for food quality control as this technology can identify the unique “fingerprint” in agri-food products. It offers non-destructive ways to counter fraud in industry, in the food supply chain, and to ensure public safety. Field deployment of high resolution spectrometers and remote monitoring is a major priority yet remains elusive due to the very high cost of spectroscopy devices which are also relatively large and cumbersome.

On the other hand, miniaturised spectrometers can solve the issue of portability but they can only attain a limited performance and operate on a limited wavelength range . Machine learning is finding increasingly broad applications in food sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, though complicated, independent inputs.

Techniques used address reducing the dimensionality of input data and use both unsupervised & supervised learning approaches. They can include the common holistic regression-based partial least squares model which is a standard tool in chemometrics, principal component analysis, local features based solutions and deep learning. Augmenting the performance of portable spectrometers can be well justified and argued. It can extend the limited range of individual sensors to cover near infra-red, visible and ultra violet wavelength range through fusion. It is otherwise very useful in addressing the intrinsic spectral data curse of dimensionality, non-linearity and collinearity where a single peak at a given wavelength may bleed into the measurement of multiple neighbouring data points. Further, previous work has shown that spectral data can be characterized by relatively low signal-to-noise ratio, it is of low resolution, and may be affected by background and ambient noise including EM events (such as switching lights on and off).

The misalignment of spectral data is yet another common distortion. All these challenges have to be addressed and embedded in any machine learning approach so that meaningful information is not discarded due to the low resolution of portable spectrometers . It seems that putting back ordinary citizens and users of the portable spectrometers technology to the first line of defence against food fraud rather than being the victims depends largely on addressing the points above. Data acquired using portable sensors will be processed and analysed using machine learning algorithms for the purpose of quality control.

Hence, this project will have the following objectives:

1)To build statistical models which tackle multivariate spectral data sets.

2)To acquire and adequately use spectral data for deep neural network training.

3)To identify and extract local features which are distortions invariants and suitable for matching spectral data.


Essential criteria

  • To hold, or expect to achieve by 15 August, an Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC) in a related or cognate field.

Funding

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Vice Chancellors Research Studentship (VCRS)

    Full award (full-time PhD fees + DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £15,000 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Bursary (VCRB)

    Part award (full-time PhD fees + 50% DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £7,500 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Fees Bursary (VCRFB)

    Fees only award (PhD fees + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University


Reviews

As Senior Engineering Manager of Analytics at Seagate Technology I utilise the learning from my PhD ever day

Adrian Johnston - PhD in Informatics

Watch Video  

Key dates

Submission deadline
Monday 18 February 2019

Interview Date
mid March 2019


Applying

Apply Online  


Campus

Jordanstown campus

Jordanstown campus
The largest of Ulster's campuses


Contact supervisor

Dr Omar Nibouche


Other supervisors

Related Funded Opportunities

Context aware Brain Computer Interfaces and Internet of Things (IoT)

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Autonomous Object Recognition for Robots

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Neural Data Science, Computational Neuromodulation, and Metalearning

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Augmented Reality Brain-computer Interface

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Gaining a better understanding of our Planet through Deep Learning-based Data Analytics

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Data Analytic Technologies to Combat Human Trafficking

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Adaptive Learning for Modelling Non-stationary Dynamical Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Computational and Mathematical Modelling of Predator-Prey Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Computing

Subject: Computer Science and Informatics

 View details

Applying Natural Language Processing to the automated fact checking of legal documents

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Deep-learning assisted tele-medicine for the delivery of diabetic retinopathy screening in low- and middle-income countries

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Intelligent Systems

Subject: Computer Science and Informatics

 View details

The impact of the analytical performance of laboratory tests on clinical decision making

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Sensing human emotion within pervasive environments

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Magic Hands: Non-invasive hand tracking for virtual reality and game based stroke rehabilitation.

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Intelligent Mobility Aids to Promote Physical Activity in Children with Cerebral Palsy

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Nursing and Health

 View details

Network Machine Learning Approach to Financial Crime Detection

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Trusting the uncertainty in machine learning predictions

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Mapping the Brain with Zero Knowledge using advanced AI and Data Analytics

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Neuro Sense: serious games for in-situ autism assessment

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Exploiting Brain Inspired Information Processing in Hardware to Develop Highly Reliable, Always-on Smart Sensor Systems.

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Autonomous Decision Analytics by Integrating Machine Learning and Symbolic Reasoning

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

An Approach for Constructing and Sharing Open Data Sets in Experimental Pervasive Computing

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

RECASE: Robot-Enabled Care system in Smart Environments

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Sensing and Modelling Air Quality for Healthy Living (SMAQ)

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Chatbots for decision support and reporting in healthcare

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

PostCrypt: Data Security for the future

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Enhanced Augmented Reality with Data Engineering and AI for Smart Digital Education

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Education

 View details

AI-enabled Automated Behaviour Analysis for User-centric Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Quantitatively assessment of limb motion utilising wearable sensors in remote rehabilitation

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Towards Trusted Cognitive Intelligence for User-centric Smart Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details