This opportunity is now closed.

Funded PhD Opportunity

Pressure and thermal effects of high-pressure hydrogen jets

Subject: Architecture, Built Environment and Planning


Summary

High-pressure hydrogen jet releases, if ignited, can generate not only thermal effects on humans and structures in the form of high-temperature flows and thermal radiation but also hazardous pressure effects (overpressure and impulse). A hydrogen jet released into the air may be ignited immediately, resulting in a jet fire, i.e. non-premixed turbulent combustion, or after some time, resulting in delayed ignition, whereby the combustion of the turbulent premixed hydrogen-air cloud can lead to significant overpressures before a jet fire is formed.

Contemporary tools such as Computational Fluid Dynamics (CFD) and reduced models are needed to predict pressure dynamics and loads which are dependent on the release parameters (pressure and release diameter), jet parameters (free or impinging jet), ignition location and delay in timing of ignition, etc.

Within this study such tools will be developed and validated against available experimental data. Results of CFD simulations can be used to inform the development of predictive engineering correlations. The results of the studies on impinging jets will have a twofold application facilitating the understanding of the potential damage caused but also informing understanding of the mitigation potential of a structure, dependent on whether the jet impinges on a piece of equipment/infrastructure or a barrier. Scenarios involving delayed ignition of turbulent releases in enclosed or congested spaces may be added to the study.

The Ulster multi-phenomena deflagration model with suitable modifications can be employed for the CFD modelling of combustion of the turbulent inhomogeneous hydrogen-air mixture in the jet.

The candidate should undertake coupled CFD-FEM study of hydrogen jet fire effects on structures stability and integrity, e.g. tunnel structures, residential buildings, etc. The outputs from this study will inform guidance for safety engineers, and advance understanding of delayed ignition of hydrogen jets.


Essential criteria

  • To hold, or expect to achieve by 15 August, an Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC) in a related or cognate field.
  • Clearly defined research proposal detailing background, research questions, aims and methodology

Funding

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Vice Chancellors Research Studentship (VCRS)

    Full award (full-time PhD fees + DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £15,000 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Bursary (VCRB)

    Part award (full-time PhD fees + 50% DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £7,500 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Fees Bursary (VCRFB)

    Fees only award (PhD fees + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 18 February 2019

Interview Date
13 March to 21 March 2019


Applying

Apply Online  


Campus

Jordanstown campus

Jordanstown campus
The largest of Ulster's campuses


Contact supervisor

Dr Sile Brennan


Other supervisors

Related Funded Opportunities

Creating an integrated energy management strategy for sustainable cities

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Civic Ecology and Life Infrastructure: Humanitarian Infrastructure Development

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Evolution of the race track / tire interface

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Structures Fire Behaviour and Protections Fire Performance

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Planning for Community Resilience: bridging the policy-practice gap

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Fire: Human behaviour, Community Safety and Risk Assessment

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Nanoparticles based Solar Energy and Energy Storage (Nano_SEES) System

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Solidification of point cloud data for irregular shapes

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Healthy Urban Environments. Assessing the needs and expectations of Young People across European Cities

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Fire Dynamics and Material Flammability

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Net and Autonomous Zero Emission Building (NZEB) Concepts & Strategies for Temperate Climates: UK/Northern Ireland

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Architecture, Built Environment and Planning

Subject: Architecture, Built Environment and Planning

 View details

Co-Designing Child Friendly Places: Growing the Resilience of Children through Inclusive Planning

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Prevention and mitigation of accidents with hydrogen vehicles in underground parking

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Development of an innovative Building Integrated, Solar, Climate COntrol Facade (BISCCOF) using thermal diode technology

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Explosion-free in a fire composite storage cylinder for compressed gas

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

The Impact of policy and the application of regulatory controls on the achievement of overarching sustainability goals.

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Assessment of hazards of high-pressure hydrogen tank rupture using coupled CFD-FEM modelling

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Sustainable Technologies in Energy, Water and Agriculture for Rural Development (STEWARD)

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details