This study will review and design new lateral flow based methodologies for assessing heart failure via blood diagnostics in line with new Heart Failure medicine that is now entering the NHS. In particular the project will focus on a lateral flow (LF) biomarker for cystatin C based kidney function diagnostics. Heart Failure is the clinical syndrome that can result from any structural or functional cardiac disorder that impairs ability of ventricle to fill with or eject blood. It occurs when the heart is unable to pump sufficiently to maintain blood flow to meet the body's needs. Signs and symptoms commonly include shortness of breath, excessive tiredness, and leg swelling. This area is well known to be associated with high levels of readmissions and there is a high possibility that a point-of-care system can be developed to allow biomarker (nt-pro-BNP), respiration rate and kidney function (creatinine) monitoring thus allowing trend/alert patient management.

Key to this project realising its potential is feedbacking essential biomarker information to allow improved medicine management. Although much work is underway improved kidney function point of care diagnostics is required. Hence this project will ascertain a way forward for the use of point of care based cystatin C based kidney function LF diagnostics.

Aim: Is to evaluate a new lateral flow biomarker based device suitable for HF assessment and monitoring in the home. To optimise and specify a way forward for the use of point-of-care based cystatin C based kidney function LF diagnostics.

Skills and Background:  Either – Bio-Engineering, Biochemist or Clinician

Essential criteria

  • To hold, or expect to achieve by 15 August, an Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC) in a related or cognate field.


This project is funded by: the EU INTERREG VA Programme

This project is supported by the European Union's INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB).

The scholarships will cover tuition fees and a maintenance award of not less than £14,777 per annum for three years (subject to satisfactory academic performance). Applications are invited from UK, European Union and overseas students.

Other information

The Doctoral College at Ulster University