This opportunity is now closed.

Funded PhD Opportunity

Functionalised gold surfaces for cancer therapy.

Subject: Engineering


Summary

Gold nanoparticles (AuNP) with diameters of ~15nm can be readily synthesised in the laboratory and are the subject of a concerted international research effort, focused on developing new cancer therapies, with the aim of obtaining lower dosages and smaller side effects. For such a nanoparticle-delivery system to function effectively it must be capped with ligands to prevent capture by the immune system and to target and enter tumour cells. Generally these functions cannot be delivered by a single ligand and, hence, the development of these systems requires dual functionalization, attachments of typically a poly-ethylene glycol (PEG) ligand, to escape the immune system and also a peptide ligand to facilitate cell entry. At present the methods to prepare and analyse these ligand-functionalised particles are not fully developed, most notably, the arrangement and size of the ligands on the AuNP is still unknown.

This project tackles this issue for gold nanoparticles (AuNP) functionalised with PEG and peptide ligands, which represents a candidate system for the development of prostate cancer drugs. It will use principally atomic force microscopy (AFM) in a liquid environment. The supervisory team has well-established research expertise in AFM and SEM microscopy (P Lemoine), functionalisation of AuNP (D. Dixon) and cell biology (G Burke). It follows from an existing collaboration between Lemoine and Dixon, which has already yielded preliminary results on the AFM analysis of AuNP and an ongoing re-submission of an EPSRC proposal.

The rationale for this study is that, alternative solution analysis techniques used to date (FTIR, DLS, Zeta-potential) only give indirect information on size and arrangement.

The objectives of this project are;

1.To determine size and arrangement of competing PEG and peptide ligands on gold thin film surfaces using AFM microscopy and low kV field emission SEM microscopy. We will also study how blood proteins adhere to these surfaces to investigate their likely biological response.

2.To investigate these ligands on colloidal AuNP solutions, using, amongst others, the aforementioned solution analysis techniques.

3.To prepare and characterise ligand-functionalised AFM probes.

4.To use force spectroscopy and lateral force microscopy to analyse the interactions of these AFM probes with self-assembled AuNP layers and surface-immobilised cancer cells.

The overall delivery of the project is a better understanding of the arrangement and size of competing PEG and peptide ligands on AuNP as well as their interactions with cancer cells. This knowledge will result in more efficient functionalisation recipes, which will be tested in D. Dixon’s group, by well-established biological protocols as well as high-impact publications and RC funding bids. The proposed research is also aligned on the ‘healthy communities’ theme identified in the ‘five and fifty’ UU strategic plan, as well as its declared strategic priority to focus on research with impact.


Essential criteria

  • Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC)

Funding

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Vice Chancellors Research Studentship (VCRS)

    Full award (full-time PhD fees + DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £15,000 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Bursary (VCRB)

    Part award (full-time PhD fees + 50% DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £7,500 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Fees Bursary (VCRFB)

    Fees only award (PhD fees + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training studentship grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 19 February 2018

Interview Date
Mid March 2018


Applying

Apply Online  


Contact supervisor

Dr Patrick Lemoine


Other supervisors

Related Funded Opportunities

Engineering

Subject: Engineering

 View details