PhD Study : Rapid Diagnostics for Antimicrobial Resistant Pathogens

Apply and key information  

Summary

The (mis)use of antibiotics for more than 50 years has resulted in bacterial organisms becoming resistant to treatment – i.e. antimicrobial resistance (AMR).  Resistant organisms, such as MRSA and C. diff are commonly identified in healthcare facilities across the globe; annually 700,000 fatalities are directly attributed to drug resistant infections.  A recent report from The Review on Antimicrobial Resistance, chaired by Lord O'Neill, projects that drug-resistant infections could kill 10 million people annually across the world by 2050 incurring a global financial cost of $100 trillion (1).  Issues surrounding AMR are not limited to human medicine, with new approaches towards the management of animals and the environment also required – a One Health approach is being promoted. Standard techniques for the identification of pathogenic and AMR organisms are based upon the growth of patients’ samples on agar plates (phenotypic methods), which require 48 - 72 hours toidentify organisms such as MRSA, and several weeks for the pathogens causing Tuberculosis (2).  Advances in hardware and software have resulted in the development of a small number of rapid diagnostic tests which can provide results within hours of a sample being taken, however these tests do not have the sensitivity or speed of analysis to aid a medical practitioner (e.g. a GP or a vet) to identify the organisms causing a disease or to provide information on the resistance of organisms to antibiotics.  As such, antibiotics are often prescribed to a patient with a viral disease (e.g. the cold or flu) and worse than having no therapeutic effect, increase the development of resistant organisms with the patient (1).  Rapid genomic based approaches, such as the use of the whole genome sequencing, have shown significant promise in reducing the time required to detect resistant pathogens and therefore clinicians can administer more targeted medical therapy within hours.

This PhD project will develop rapid tests to classify pathogens and identify their sensitivity to a range of antimicrobial compounds, in a bid to provide rapid and accurate information to permit a medical practitioner to prescribe antibiotics in an informed, targeted and more appropriate way.  The project will involve the development of next-generation lateral flow devices, based on multiplexed nucleic acid detection, and star shaped nanoparticles for surface enhanced raman spectroscopy  (SERS).  This underpinning technology has wide application for sensitive and specific bacterial detection in water, food, human and veterinary medicine. The supervisory team at NIBEC have significant experience in microbiology, molecular biology, nanoparticle preparation & characterisation and the development of lateral-flow based point-of-care tests - from first principle experiments, rapid prototyping, computational analysis and app development through to patient trails.  Successful student/s will work along side researchers on a number of ongoing national and international research projects within NIBEC.

References:

(1) O’Neill (2015) Rapid Diagnostics: Stopping Unnecessary Use of Antibiotics.  Published online: http://amr-review.org/sites/default/files/Paper-Rapid-Diagnostics-Stopping-nnecessary-Prescription-Low-Res.pdf

(2) Wenzler et al (2016) Controversies in Antimicrobial Stewardship: Focus on New Rapid Diagnostic Technologies and Antimicrobials, Antibiotics, 5, 6 (doi: 10.3390/antibiotics5010006).

Essential criteria

Applicants should hold, or expect to obtain, a First or Upper Second Class Honours Degree in a subject relevant to the proposed area of study.

We may also consider applications from those who hold equivalent qualifications, for example, a Lower Second Class Honours Degree plus a Master’s Degree with Distinction.

In exceptional circumstances, the University may consider a portfolio of evidence from applicants who have appropriate professional experience which is equivalent to the learning outcomes of an Honours degree in lieu of academic qualifications.

Funding and eligibility

The University offers the following levels of support:

Vice Chancellors Research Studentship (VCRS)

The following scholarship options are available to applicants worldwide:

  • Full Award: (full-time tuition fees + £19,000 (tbc))
  • Part Award: (full-time tuition fees + £9,500)
  • Fees Only Award: (full-time tuition fees)

These scholarships will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance) and will provide a £900 per annum research training support grant (RTSG) to help support the PhD researcher.

Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Please note: you will automatically be entered into the competition for the Full Award, unless you state otherwise in your application.

Department for the Economy (DFE)

The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £19,000 (tbc) per annum for three years (subject to satisfactory academic performance).

This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

  • Candidates with pre-settled or settled status under the EU Settlement Scheme, who also satisfy a three year residency requirement in the UK prior to the start of the course for which a Studentship is held MAY receive a Studentship covering fees and maintenance.
  • Republic of Ireland (ROI) nationals who satisfy three years’ residency in the UK prior to the start of the course MAY receive a Studentship covering fees and maintenance (ROI nationals don’t need to have pre-settled or settled status under the EU Settlement Scheme to qualify).
  • Other non-ROI EU applicants are ‘International’ are not eligible for this source of funding.
  • Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Due consideration should be given to financing your studies. Further information on cost of living

The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 19 February 2018
12:00AM

Interview Date
Mid March 2018

Preferred student start date
Mid September 2018

Applying

Apply Online  

Contact supervisor

Dr Patrick Dunlop

Other supervisors