PhD Study : Low energy plasma radiotherapy – could this be a route to gentle and effective treatment of cancer or antibiotic resistant microbes?.

Apply and key information  

Summary

Cold plasmas show great potential to kill cancer cells or highly antibiotic resistant microbes in wounds. Now we ask if we could create an ultra-low energy alternative to chemo-radiotherapy that would avoid the side effects of high energy radiotherapy. Cold plasmas in contact with liquids create complex chemical cocktails. We understand little of their chemical properties but their destructive effects on tumour cells or resistant microbes are remarkable. To prove our idea and turn it into a viable treatment technology will require a multidisciplinary effort involving a team with skills in plasmas, physics, chemistry, biology, microbiology and biomedical, electronic or mechanical engineering.

We are looking for keen students, from ANY discipline, to join our team with a PhD project individually tailored to their skills/interests. Example projects are:

(i) the interaction between plasmas and DNA/RNA or living cells; we have a unique experimental setup where we can directly expose molecules or living cells to reactive radicals with different doses. For the first time ever we hope to supply highly reactive electrons at very low energy and test their effect. These electrons could be critically important in understanding chemo-radiotherapy processes at the lowest energies.

(ii) design of systems that will bring plasma treated liquids rapidly into the body or onto a wound: a plasma can create highly effective plasma active liquids (PAL) for cancer of antibiotic resistant treatment. It is important that the time between PAL creation and interaction with biology is very short (< milliseconds). We have developed a system of creating PAL in flight using a stream of droplets for direct delivery to the tissue. The droplets are charged, so we are looking to use this and other factors to help steer the droplets. An ultimate objective is a method to deliver droplets along a tube deep into the body.

(iii) physics and/or chemistry of plasma-liquid interactions through experiment or simulation: it is difficult to measure the concentration of reactive radicals because they last only for a very short time. There are new simulation packages available that will help build a model of plasma and liquid chemistry and how it changes with time.

(iv) plasma-liquid synthesis of nanomaterials for bio-diagnostics-therapeutics: we have already demonstrated the ability with droplets to rapidly create nanomaterials such as gold nanoparticles and then deliver droplets with the nanoparticles directly to point of use. This could be useful in many applications and very valuable medically for biodiagnostics and therapy e.g. in cancer treatment. Apart from direct delivery, our nanoparticles are pristine i.e. they don’t have to be coated in protective layers and so may have much greater efficacy.

(v) design of new plasma electronics; before plasma systems can be fully integrated into medical applications, we need RF design (at LF – VHF) to miniaturise our devices and to improve the feedback control.

(vi) design of new plasma-based microfluidic devices. Prior knowledge of plasmas NOT required. For some projects, familiarity with aspects of plasmas would beneficial but not essential.

Essential criteria

Applicants should hold, or expect to obtain, a First or Upper Second Class Honours Degree in a subject relevant to the proposed area of study.

We may also consider applications from those who hold equivalent qualifications, for example, a Lower Second Class Honours Degree plus a Master’s Degree with Distinction.

In exceptional circumstances, the University may consider a portfolio of evidence from applicants who have appropriate professional experience which is equivalent to the learning outcomes of an Honours degree in lieu of academic qualifications.

Funding and eligibility

The University offers the following levels of support:

Vice Chancellors Research Studentship (VCRS)

The following scholarship options are available to applicants worldwide:

  • Full Award: (full-time tuition fees + £19,000 (tbc))
  • Part Award: (full-time tuition fees + £9,500)
  • Fees Only Award: (full-time tuition fees)

These scholarships will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance) and will provide a £900 per annum research training support grant (RTSG) to help support the PhD researcher.

Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Please note: you will automatically be entered into the competition for the Full Award, unless you state otherwise in your application.

Department for the Economy (DFE)

The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £19,000 (tbc) per annum for three years (subject to satisfactory academic performance).

This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

  • Candidates with pre-settled or settled status under the EU Settlement Scheme, who also satisfy a three year residency requirement in the UK prior to the start of the course for which a Studentship is held MAY receive a Studentship covering fees and maintenance.
  • Republic of Ireland (ROI) nationals who satisfy three years’ residency in the UK prior to the start of the course MAY receive a Studentship covering fees and maintenance (ROI nationals don’t need to have pre-settled or settled status under the EU Settlement Scheme to qualify).
  • Other non-ROI EU applicants are ‘International’ are not eligible for this source of funding.
  • Applicants who already hold a doctoral degree or who have been registered on a programme of research leading to the award of a doctoral degree on a full-time basis for more than one year (or part-time equivalent) are NOT eligible to apply for an award.

Due consideration should be given to financing your studies. Further information on cost of living

The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 19 February 2018
12:00AM

Interview Date
Mid March 2018

Preferred student start date
Mid September 2018

Applying

Apply Online  

Contact supervisor

Professor Paul Maguire

Other supervisors