This opportunity is now closed.

Funded PhD Opportunity

Large-Scale Multimodal Brain Connectivity Analysis for Discovering Neuromarkers for Early Detection of Alzheimer’s Disease

Subject: Computer Science and Informatics


Summary

Alzheimer’s disease (AD) is the most common cause of dementia and one of the main health problems in the elderly worldwide. The estimated worldwide cost of caring for 47M affected by dementia was US$818 billion in 2015 and UK is expected to have 1M cases by 2021 [1]. Mild cognitive impairment (MCI) is usually considered as an intermediate stage between the cognitive declines associated with normal aging and a state of dementia [2]. To address the challenge of AD, several worldwide ageing studies (cf. [4]) are being undertaken.

These studies often include multiple brain imaging modalities such as EEG, MEG, PET, and MRI. In particular, MEG is a technique specifically designed to measure dynamic neural activity non-invasively featuring very high time and spatial resolution, and has been increasingly applied in the study of MCI and AD. Recent studies based on MEG have also demonstrated that pharmacological treatment for early AD and MCI can slow the progression of the disease [3]. As part of NI Functional Brain Mapping (FBM) facility, an MEG-based brain connectivity study is underway with the objective of characterizing MCI, which is crucial for early detection of progression from MCI to AD. In addition, our recent EU funded project on redesigning dementia care pathway will involve large heterogeneous data.

Working along with these major funded projects, this project will involve performing comprehensive data analysis on multi-modality neuroimaging data to discover stratified neuromarkers for early prediction of an individual’s possible progression to AD.

The PhD researcher will first undertake a thorough review of the AD literature, particularly related with structural and functional connectivity changes in cognitively impaired brain. Next the student will seek to gain access to available multi-modal neuroimaging data and undertake appropriate pre-processing and analysis of the data to attain a deeper insight. This will be followed by a detailed investigation into a range of feature extraction and selection procedures, and machine learning algorithms, so as to identify robust changes in brain patterns related with neuronal connectivity and/or oscillations in the brains of a large population of healthy persons, people with MCI, and AD patients.

Anticipated Outcomes: The neuromarkers identified in the project will have strong potential for inclusion in a clinical procedure that enables clinicians to routinely use MEG and other neuroimaging data in the assessment of individuals presenting with symptoms consistent with early stages of dementia type impairments.

References

1.Prince et al.  (2015). World Alzheimer Report 2015, pp 1-21.

2.Petersen et al. (2009). Early diagnosis of Alzheimer’s disease: Is MCI too late? Curr. Alzheimer Res. 6:324–30.

3.Feldman et al. (2005). Mild cognitive impairment. Am J Geriatr Psychiatry.13(8):645-55.

4.Cambridge Centre for Ageing and Neuroscience: http://www.cam-can.org/.

5.Youssofzadeh et al. (2015). Multi-kernel learning with Dartel improves combined MRI-PET classification of Alzheimer’s disease in AIBL data: Group and Individual Analyses. Front. Hum. Neurosci., 11:380.

6.Youssofzadeh et al. (2016). Temporal information of directed causal connectivity in multi-trial ERP data using partial Granger causality. Neuroinformatics, 14(1):99-120.


Essential criteria

  • To hold, or expect to achieve by 15 August, an Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC) in a related or cognate field.
  • Experience using research methods or other approaches relevant to the subject domain

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • First Class Honours (1st) Degree
  • Masters at 70%
  • For VCRS Awards, Masters at 75%
  • Publications - peer-reviewed

Funding

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Vice Chancellors Research Studentship (VCRS)

    Full award (full-time PhD fees + DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £15,000 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Bursary (VCRB)

    Part award (full-time PhD fees + 50% DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £7,500 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Fees Bursary (VCRFB)

    Fees only award (PhD fees + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University


Reviews

As Senior Engineering Manager of Analytics at Seagate Technology I utilise the learning from my PhD ever day

Adrian Johnston - PhD in Informatics

Watch Video  

Key dates

Submission deadline
Monday 19 February 2018

Interview Date
12 March 2018


Applying

Apply Online  


Contact supervisor

Professor Girijesh Prasad


Other supervisors

Related Funded Opportunities

Context aware Brain Computer Interfaces and Internet of Things (IoT)

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Autonomous Object Recognition for Robots

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Neural Data Science, Computational Neuromodulation, and Metalearning

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Computing

Subject: Computer Science and Informatics

 View details

Augmented Reality Brain-computer Interface

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Gaining a better understanding of our Planet through Deep Learning-based Data Analytics

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Data Analytic Technologies to Combat Human Trafficking

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Computational and Mathematical Modelling of Predator-Prey Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Adaptive Learning for Modelling Non-stationary Dynamical Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Applying Natural Language Processing to the automated fact checking of legal documents

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Deep-learning assisted tele-medicine for the delivery of diabetic retinopathy screening in low- and middle-income countries

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Intelligent Systems

Subject: Computer Science and Informatics

 View details

The impact of the analytical performance of laboratory tests on clinical decision making

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Sensing human emotion within pervasive environments

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Magic Hands: Non-invasive hand tracking for virtual reality and game based stroke rehabilitation.

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Intelligent Mobility Aids to Promote Physical Activity in Children with Cerebral Palsy

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Nursing and Health

 View details

Network Machine Learning Approach to Financial Crime Detection

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Trusting the uncertainty in machine learning predictions

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Mapping the Brain with Zero Knowledge using advanced AI and Data Analytics

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Neuro Sense: serious games for in-situ autism assessment

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Exploiting Brain Inspired Information Processing in Hardware to Develop Highly Reliable, Always-on Smart Sensor Systems.

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Computer Science and Informatics

 View details

Autonomous Decision Analytics by Integrating Machine Learning and Symbolic Reasoning

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

An Approach for Constructing and Sharing Open Data Sets in Experimental Pervasive Computing

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

RECASE: Robot-Enabled Care system in Smart Environments

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Sensing and Modelling Air Quality for Healthy Living (SMAQ)

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Chatbots for decision support and reporting in healthcare

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

PostCrypt: Data Security for the future

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Enhanced Augmented Reality with Data Engineering and AI for Smart Digital Education

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics|Education

 View details

AI-enabled Automated Behaviour Analysis for User-centric Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Quantitatively assessment of limb motion utilising wearable sensors in remote rehabilitation

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details

Towards Trusted Cognitive Intelligence for User-centric Smart Systems

Closing date:
Friday 7 February 2020
Subject: Computer Science and Informatics

 View details