This opportunity is now closed.

Funded PhD Opportunity

Safety of Liquified Hydrogen in Energy Applications

Subject: Architecture, Built Environment and Planning


Summary

Liquified hydrogen (LH2) is the most efficient way to transport hydrogen over large distances at emerging state of hydrogen infrastructure when pipelines are not yet available as an alternative way to deliver hydrogen to refuelling stations and homes. This is the inherently safer way to store and distribute large amount of hydrogen at refuelling stations. The development of innovative safety strategies and engineering solutions for LH2 systems and infrastructure requires fundamental understanding of underlying physical phenomena and validated engineering models and tools for safety design.

The models and safety measures to prevent and mitigate accidents involving LH2 systems and infrastructure have to be developed. The following phenomena have to be studied yet to underpin the development of the technology: multiphase release and dispersion of LH2 in the open atmosphere and confined spaces; release and dispersion of cryogenic hydrogen; thermal hazards from low temperatures; ignition parameters and flammability limits of cryogenic hydrogen; explosion of LH2 tank in BLEVE (Boiling Liquide Expanding Vapour Explosion) regime; pressure and thermal loads from LH2 and cryogenic hydrogen combustion in confined and congested areas; etc. The suitability of available tools for gaseous hydrogen to releases of LH2 and cryogenic hydrogen should be critically analysed. Novel analytical and numerical tools for calculation of hazard distance for LH2 and cryogenic hydrogen should be developed based on an improved understanding of the underlying physics. The developed models must be validated against experimental data that will be obtained in collaboration with our European partners during delivery of H2020 project PRESLHY “”.

The successful candidate will work at HySAFER Centre, which is a key provider of hydrogen safety research and education globally. This doctoral project will contribute to PRESLHY project “Pre-normative research for safe use of liquid hydrogen”, which will start in 2018. The thrust in research will be on the use of Computational Fluid Dynamics (CFD) and theoretical studies in conjunction with analysis of available and new experimental data, which will be obtained within PRESLHY. HySAFER team uses mainly Ansys Fluent as computational engine with User Defined Functions to implement own sub-models. Candidate’s experience in the use of CFD software (FLUENT, OpenFOAM, etc.) is welcome. The candidate could select for his/her proposal writing any or a mixture of above mentioned knowledge gaps in LH2 safety. The results of research should be presented to PRESLHY partners and at conferences.

Education in combustion and experience in CFD are welcome. The state-of-the-art software and hardware are available. HySAFER pursues a wide international collaboration strategy through national (EPSRC) and overseas (H2020) research projects.


Essential criteria

  • To hold, or expect to achieve by 15 August, an Upper Second Class Honours (2:1) Degree or equivalent from a UK institution (or overseas award deemed to be equivalent via UK NARIC) in a related or cognate field.
  • Experience using research methods or other approaches relevant to the subject domain
  • Sound understanding of subject area as evidenced by a comprehensive research proposal

Desirable Criteria

If the University receives a large number of applicants for the project, the following desirable criteria may be applied to shortlist applicants for interview.

  • A comprehensive and articulate personal statement

Funding

    The University offers the following awards to support PhD study and applications are invited from UK, EU and overseas for the following levels of support:

    Vice Chancellors Research Studentship (VCRS)

    Full award (full-time PhD fees + DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £15,000 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Bursary (VCRB)

    Part award (full-time PhD fees + 50% DfE level of maintenance grant + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees and provide the recipient with £7,500 maintenance grant per annum for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Vice-Chancellor’s Research Fees Bursary (VCRFB)

    Fees only award (PhD fees + RTSG for 3 years).

    This scholarship will cover full-time PhD tuition fees for three years (subject to satisfactory academic performance). This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Department for the Economy (DFE)

    The scholarship will cover tuition fees at the Home rate and a maintenance allowance of £ 15,009 per annum for three years. EU applicants will only be eligible for the fee’s component of the studentship (no maintenance award is provided). For Non-EU nationals the candidate must be "settled" in the UK. This scholarship also comes with £900 per annum for three years as a research training support grant (RTSG) allocation to help support the PhD researcher.

    Due consideration should be given to financing your studies; for further information on cost of living etc. please refer to: www.ulster.ac.uk/doctoralcollege/postgraduate-research/fees-and-funding/financing-your-studies


Other information


The Doctoral College at Ulster University

Key dates

Submission deadline
Monday 19 February 2018

Interview Date
12 March 2018


Applying

Apply Online  


Contact supervisor

Dr Dmitriy Makarov


Other supervisors

Related Funded Opportunities

Creating an integrated energy management strategy for sustainable cities

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Civic Ecology and Life Infrastructure: Humanitarian Infrastructure Development

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Evolution of the race track / tire interface

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Structures Fire Behaviour and Protections Fire Performance

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Planning for Community Resilience: bridging the policy-practice gap

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Fire: Human behaviour, Community Safety and Risk Assessment

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Nanoparticles based Solar Energy and Energy Storage (Nano_SEES) System

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Solidification of point cloud data for irregular shapes

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Healthy Urban Environments. Assessing the needs and expectations of Young People across European Cities

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Fire Dynamics and Material Flammability

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Net and Autonomous Zero Emission Building (NZEB) Concepts & Strategies for Temperate Climates: UK/Northern Ireland

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Architecture, Built Environment and Planning

Subject: Architecture, Built Environment and Planning

 View details

Co-Designing Child Friendly Places: Growing the Resilience of Children through Inclusive Planning

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Prevention and mitigation of accidents with hydrogen vehicles in underground parking

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Development of an innovative Building Integrated, Solar, Climate COntrol Facade (BISCCOF) using thermal diode technology

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Explosion-free in a fire composite storage cylinder for compressed gas

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

The Impact of policy and the application of regulatory controls on the achievement of overarching sustainability goals.

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Assessment of hazards of high-pressure hydrogen tank rupture using coupled CFD-FEM modelling

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details

Sustainable Technologies in Energy, Water and Agriculture for Rural Development (STEWARD)

Closing date:
Friday 7 February 2020
Subject: Architecture, Built Environment and Planning

 View details