Skip to navigation Skip to content

Overview

This course offers students a broad engineering experience designed to suit the current needs for Electrical and Electronic Engineering.

Summary

The BEng Hons Electrical and Electronic Engineering degree will prepare you to become a professional electrical engineer, working on electrical products and systems, from research and design to installation. It will be your job to deal with the input of power to electrical systems, as well as with data acquisition and gathering.

You will be qualified to work in many areas, including power generation and control, transportation, IT, manufacturing, construction and telecommunications.

Most electrical engineers work with large-scale electrical systems, such as using electricity to transmit energy, however a wide range of technologies are being developed, from household appliances and installing lighting within buildings, to power stations and satellite communications.

The course has a built-in year of work experience, where students work in industry during their third year, making it a highly practical degree with highly trained graduates.

International Students

If you don't meet our entry requirements for this course you may want to consider our International Foundation Programme (IFP)

The International Foundation Programme (IFP) will prepare you for studying an undergraduate degree at Ulster.

Find out more

Sign up for course updates

Sign up to receive regular updates, news and information on courses, events and developments at Ulster University.

We’ll not share your information and you can unsubscribe at any time.

About this course

In this section

About

This course aims to prepare graduates to contribute to the electronic and electrical power industry. The course will develop theoretical and practical skills in electronics, power and renewable energy engineering which are widely sought after across the wider engineering sector.

Year 1 provides an understanding of fundamental electrical and electronic engineering principles. It equips students with additional mathematical skills, identifies the potential of computer-based information handling, analysis and graphics, and develops the skills necessary for effective communication. Topics covered include electrical circuits, engineering mathematics, electrical systems, electrical technology, design and CAE and professional studies.

Year 2 builds on those skills developed in year 1. Students’ analytical skills are enhanced through their involvement in a wide range of engineering situations and roles. In the field, engineers will be expected to prepare project specifications, undertake research, create test procedures, write reports and interpret data. Modules offered are: control theory and applications, engineering analysis, electrical services, microprocessor design, power and communications.

Year 3 Industrial placement. The third year is spent on Industrial Placement, an integral and compulsory part of the course. The student works as a trainee engineer in a relevant company and is paid an attractive salary. During placement, students develop key skills including project management, leadership and communication, as well as commercial awareness, which are crucial to being a professional electrical engineer.

Year 4 Students in their final year will study topics which include industrial automations and control, design, industrial applications and undertake a final year project.

Associate awards

Diploma in Professional Practice DPP

Diploma in International Academic Studies DIAS

Diploma in Professional Practice International DPPI

Find out more about placement awards

Attendance

Attendance is full-time and is normally spread over a week. There are 12 weeks of teaching each semester and in full-time mode students cover 2 semesters per year. Between semesters students complete exams. Details of teaching times and dates are available on request.

Each student must complete 120 credits (usually 6 modules) in each academic year, with the exception of placement year (60 credits). Years 1, 2 and 4 are spent in the University. Modules are taught on campus and are web-supplemented. In Year 3, students undertake a years work experience.

Start dates

  • September 2018
How to apply

Modules

Here is a guide to the subjects studied on this course.

Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.

In this section

Year one

Mathematics for Engineering I

Year: 1

This module provides students with a solid foundation in the fundamental topics in engineering mathematics. The material develops the student?s competencies in the essential mathematics that forms an integral part of an undergraduate honours degree in engineering related disciplines.

Field and Devices

Year: 1

This module will introduce the fundamental concepts of electrostatic and electromagnetic, related rules, electric and magnetic materials and their characteristics, and their applications in physical systems.

Programming for Engineering

Year: 1

This module provides students with a solid foundation in developing software programs using a procedural programming language. It utilises a middle level language to enable the engineering student understand the relationship between software programs and the underlying hardware on which the program operates, whilst learning the key concepts and skills relevant to many modern high level languages.

Digital Electronics I

Year: 1

This module introduces the fundamentals of digital electronic devices and simple logic circuits as well as basic logic design techniques. The module introduces the student to basic digital electronics principles presented using a combination of lectures, tutorials and practical laboratories and are assessed using continuous assessment in the form of a written class test and lab practical assessments.

Circuit Analysis I

Year: 1

This module provides an introduction to the key electronic components, the basic concepts of electronic circuit design and the basic principles of electronic circuit testing and measurement taking. This module introduces the student to analogue electronics principles presented using a combination of lectures, tutorials and practical laboratories and are assessed using continuous assessment in the form of a class test and lab practical assessments.

Design and CAD I

Year: 1

This module includes freehand sketching, systems of projection, drawing conventions,
dimensioning and tolerancing, 3-D digital modelling of parts and assemblies, design
documentation, an introduction to the total design activity, formulation of a product design
specification (PDS), material selection and manufacturing considerations in design

Year two

Professional Issues

Year: 2

The module prepares students for professional work including the responsibilities and obligations of employees, employers and clients as determined in codes of professional conducts. Students will have the opportunity to practise the presentation of themselves in, for example, application forms, curriculum vitae, interview and aptitude tests. In addition the module addresses issues such as intellectual property rights and defamation, data protection, computer misuse and other ethical issues related to working as a professional in the software sector.

Embedded Programming

Year: 2

This module introduces embedded C programming. focus is on embedded programming concepts targeting the design of embedded programs for dedicated micro-processor/controllers hardware used in a wide array of modern applications including automobiles, domestic appliances and mobile technology including IoT systems.

Mathematics for Engineering II

Year: 2

This module introduces students to the essential mathematics with appropriate numerical computing and programming required for embarking on further study in engineering, computing or a related discipline. It develops the students mathematical skills required to solve problems that arise in the context of their undergraduate study. The module content is introduced in a pragmatic way and then related to real world problems, which enhances understanding and makes the concepts more meaningful and relevant for the student. The module also aims to generate in the student a spirit of mathematical investigation and discovery leading to the development of mathematical confidence. An introduction is given to MatLab, the multi-paradigm numerical computing environment and fourth-generation programming language.

Digital Electronics II

Year: 2

This module introduces digital building blocks and the principles of modern digital systems design. The module also discusses performance issues related to the realisation of digital systems. Both elements of the module are presented through lectures, tutorials and practical sessions and are assessed using both continuous assessment and formal written examination methods.

Circuit Analysis II

Year: 2

This module introduces the principles of design of analogue and digital building blocks which can be integrated to form electronic systems of moderate complexity. The module also discusses issues related to the interfacing of analogue and digital signals. Both elements of the module are presented through lectures, tutorials and practicals and are assessed using both continuous assessment and formal written examination methods.

Power System Analysis and Protection

Year: 2

This module covers the principle concepts of analysis and protection of modern power systems. It builds upon the operation of power systems under normal operations, fault analysis and principle of power system protection.

Electrical and Energy Engineering

Year: 2

Building on the fundamentals covered in ENE123 (EEE186 Magee), the aim is to develop design skills in the technologies and energy engineering involved with electricity generation, its supply, distribution and end use of electricity, both in a domestic and industrial context.

Year three

International Academic Studies

Year: 3

This module is optional

This module provides an opportunity to undertake an extended period of study outside the UK and Republic of Ireland. Students will develop an enhanced understanding of the academic discipline whilst generating educational and cultural networks.

Placement - Magee Engineering

Year: 3

This module is optional

This module is a year's paid industrial placement programmed to complement the undergraduate engineer's academic studies. The student will be employed as a junior engineer to enable improvement in their understanding of the work environment and development of their transferable, communication and personal skills. The experience will enhance their engineering ability, maturity and eventual employability.

Year four

Research Studies and Project Management

Year: 4

This module is designed to equip students with the appropriate research and project management skills needed to complete a project within the Computing domain. Firstly, the module provides an underpinning foundation of research concepts, methods and techniques necessary for project development and delivery. Secondly, the different stages of the research process are demonstrated. Thirdly, the students employ skills developed during the module to create a set of project deliverables such as project plan and proposal, critically reviewed literature papers, literature review and project presentation. Embedded in all these activities is the reinforcement of the need for adhering to recognised ethical standards and taking a professional approach to carrying out research.

Final Year Project

Year: 4

Students are required to undertake an individual project during the final year of the course. Its purpose is to provide an experience of developing a software/hardware/engineering solution to a real-world problem. This work combines skills and knowledge acquired previously on the course with those acquired during the project. In particular, students will have an opportunity to

(i) strengthen their competence in project management, in taking an initial concept through to a successful implementation; and (ii) enhance their communication skills, in producing a dissertation and defending the work.

(ii) enhance their communication skills, in producing a dissertation and defending the work.

Programmable logic systems

Year: 4

This module is designed to reinforce and further develop a student's digital design and implementation skills. It is presented via lectures, tutorials, seminars and practicals and is assessed using both continuous assessment and formal written examination methods.

Microelectronics

Year: 4

This module provides students with a graduate level understanding of semiconductor materials and microelectronics circuit performance. Additionally students will be analytically proficient in microelectronic circuit analysis techniques and be able to produce design equations for temperature stability of these circuits. The module will teach the concept of interconnect delay and noise using models of delay lines circuit noise. All teaching material will be supported with lab simulations.

Electrical & Electronic Machines

Year: 4

The module covers the theoretical and practical aspects of Power Electronics and Electrical Machines combined with the required new power semiconductors.

Electrical Energy & Smart Grids

Year: 4

The module covers theoretical and practical aspects of power systems with a large proportion of decentralised energy production.

Entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

In this section

A level

The GCE A Level requirement for this course is grades BBB to include Grade B in one from GCE A Level Mathematics, Physics, Chemistry, Technology and Design, Engineering, Design and Technology or Electronics.

See the GCSE subject and grade requirements including specific Mathematics grade required depending on the GCE A level subject presented.

BTEC

The requirement for this course is successful completion of BTEC Level 3 National Extended Diploma in a related Engineering subject area with overall award profile of DDM to include a minimum of 9 unit distinctions. Also requires a minimum Merit in a unit of Applied or Further Mathematics and a Merit in a unit of Mechanical Technology or Mechanical Principles.

The Faculty of Computing, Engineering and the Built Environment accept combinations of A Levels, BTEC Subsidiary Diploma/National Extended Certificate, BTEC 90-credit Diploma/National Foundation Diploma and BTEC National Diploma. For further information on the requirements for this course please contact Faculty admissions staff by T +44 (0)28 9036 6305 or E: compeng@ulster.ac.uk.

Entry equivalences can also be viewed in the online prospectus at http://www.ulster.ac.uk/apply/entrance-requirements/equivalence.

Irish Leaving Certificate

Overall Irish Leaving Certificate Highers requirement for this course is H3,H3,H3,H3,H3 (typical grade profile) including minimum H3 Higher Level Mathematics and one other H3 Higher Level subject from Physics, Chemistry, Physics/Chemistry, Biology, Technology, Engineering or Technology and Design.

Irish Leaving Certificate English at Grade H6 or above (HL) or Grade O4 or above (OL) if not sitting at Higher Level is also required.

Scottish Highers

The Scottish Highers requirement for this course is BBBCC (to include minimum of BB in Mathematics and a science subject).

Scottish Advanced Highers

The Scottish Advanced Highers requirement for this course is CCC (to include Mathematics and a science subject).

International Baccalaureate

Overall International Baccalaureate Diploma requirement for this course is a minimum of 26 points to include 13 at Higher Level and to include minimum grade 5 in Mathematics and another Higher Level Science subject. Grade 4 in English Language also required in overall profile.

Access to Higher Education (HE)

The entry requirement for this course is successful completion of an Ulster University validated Access route in Science/Technology with Overall mark of 70% and 70% in NICATS Mathematics (level 2). Equivalent Mathematics qualifications considered for the Mathematics requirement.

http://www.ulster.ac.uk/apply/entrance-requirements/equivalence.

GCSE

GCSE Mathematics Grade A or above (or equivalent) if presenting only one or a combination of Design and Technology, Engineering or Electronics as the specified subject/s for this course.

GCSE Mathematics Grade C or above (or equivalent) if presenting another of the specified subjects for the course with or instead of Design and Technology, Engineering or Electronics.

GCSE Grade C (or above) in English Language (or equivalent).

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Additional Entry Requirements

OCR/Cambridge Technical Combinations
The Faculty of Computing, Engineering and the Built Environment accept a range of alternative combination of qualifications such as OCR Nationals and OCR Cambridge Technicals when presented with an A Level in one of the specified subjects (please refer to A Level section).

HND/HNC

HNC requirement is overall Distinction in an Electrical, Electronic, Mechanical or Manufacturing Engineering subject (plus GCSE Maths grade C and an acceptable alternative Mathematics module) will be considered for year 1 entry only.

HND requirement is overall Merit in an Engineering subject to include a Merit in either Level 4 or Level 5 Analytical Methods module (plus GCSE Maths Grade C). Applicants may be considered for year 2 entry where the curriculum sufficiently matches that of Ulster University full-time year 1 course.

Ulster Foundation Degree
Pass in Foundation Degree with an overall mark of 55% and minimum 55% in all taught level 5 modules and 55% in Mathematics module. Applicants will normally be considered for entry to an associated Honours degree (normally Year 2 entry).

For further information regarding all of the above qualifications please contact the Faculty Admissions staff by T: +44 (0)28 9036 6305 or E: compeng@ulster.ac.uk. Entry equivalences can also be viewed in the online prospectus at http://www.ulster.ac.uk/apply/entrance-requirements/equivalence.

The General Entry Requirements must also be met including English Language minimum GCSE grade C (or equivalent). Please check the following link http://www.ulster.ac.uk/apply/entrance-requirements#ger.

Teaching and learning assessment

Formal lectures are supplemented by tutorials and laboratory investigations, as appropriate. Practical hands on laboratory sessions are an integral part of many modules throughout all years of the course. Case studies, groupwork and mini-projects are also extensively used. In the final year there is a major individual project.

Generally, a combination of continuous assessment and examination is employed in each module. Continuous assessment includes class tests, library and laboratory based assignments, and individual and group project work. Some modules across all years of the course are continuously assessed.

Exemptions and transferability

Transfer between this course and other similar courses within the Faculty of Computing, Engineering and the Built Environment may be possible on the basis of academic performance.

Exemption from parts of the course may be considered based on appropriate performance in a related, designated course or other approved experiential learning (APEL).

The course has been designed to enable students who graduate with a good honours degree to apply for postgraduate study towards a PhD, MSc, MRes or other higher qualification.

Careers & opportunities

In this section

Career options

Job prospects in a wide range of engineering industries are excellent with the majority of graduates finding employment within six months of graduation. Graduates with BEng Hons, first class or upper second class award all satisfy the requirements for a wide range of postgraduate research posts and scholarships.

Work placement / study abroad

In Year 3, the student will undertake a period of paid placement in an industrial or academic setting. Placement is compulsory and seen as an integral part providing the student the opportunity to develop into a junior engineer.

Apply

How to apply Request a prospectus

Applications to full-time undergraduate degrees at Ulster are made through UCAS.

Start dates

  • September 2018

Fees and funding

In this section

Fees (per year)

Important notice - fees information Please note fees displayed are for 2017/18 Academic Entry. Fees are correct at the time of publishing. Additional mandatory costs are highlighted where they are known in advance. There are other costs associated with university study.
View Ulster University’s 2017 fees policy

Northern Ireland & EU:
£4,030.00
England, Scotland & Wales:
£9,000.00  Discounts available
International:
£13,240.00  Scholarships available

Scholarships, awards and prizes

This course is suitable for a number of student support awards. Please contact the course director for further information.

Faculty Prizes can be viewed at: ulster.ac.uk/academicoffice/prizes.htmland follow the links to the Faculty of Computing, Engineering and the Built Environment.

Additional mandatory costs

Tuition fees and costs associated with accommodation, travel (including car parking charges), and normal living are a part of university life.

Where a course has additional mandatory expenses we make every effort to highlight them. These may include residential visits, field trips, materials (e.g. art, design, engineering) inoculations, security checks, computer equipment, uniforms, professional memberships etc.

We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. Computer suites and free wifi is also available on each of the campuses.

There will be some additional costs to being a student which cannot be itemised and these will be different for each student. You may choose to purchase your own textbooks and course materials or prefer your own computer and software. Printing and binding may also be required. There are additional fees for graduation ceremonies, examination resits and library fines. Additional costs vary from course to course.

Students choosing a period of paid work placement or study abroad as part of their course should be aware that there may be additional travel and living costs as well as tuition fees.

Please contact the course team for more information.

Contact

Faculty Office

T: +44 (0)28 9036 6305

E: compeng@ulster.ac.uk

Course Director: Dr JP Quinn

T: +44 (0)28 7167 5461

E: jp.quinn@ulster.ac.uk