Skip to navigation Skip to content
PgDip/MSc Biomedical Engineering Information Event
Thursday 23 November 2017
6:00PM - 6:45PM

PgDip/MSc Biomedical Engineering Information Event

Join us at this event to find out more about the course is excellent preparation for a career in the dynamic medical device /biotech

Find out more

Overview

Biomedical Engineering and its intelligent application to problems within industry and academic research.

Summary

This course is a suitable preparation for employment in the medical device, pharma and biotechnology sectors and as preparation for PhD studies or research positions. The course draws upon the internationally recognised research with the school in areas such as Tissue Engineering, Bioceramics, Medical Electrodes and Drug Delivery. The course team also has a wealth of industrial experience and several medical device spin out companies have been established by the school.

The School of Engineering is in the top third of Engineering departments in the UK (Guardian 2017) and its research output is ranked in the UK top 20 (REF 2017).The course is based in internationally recongnised NIBEC centre within the school which is the longest established Biomedical Research Centre in Ireland. The multi-million pound purpose-built facilities house some of the most sophisticated nano-fabrication, biological and characterisation equipment in the world. NIBEC is staffed by an internationally recognised and well experienced team of researchers and academics working predominantly at the interface of bioengineering and nanotechnology.

The course is open for January 2018 start with a closing date of Friday the 8th of December 2017.

Sign up for course updates

Sign up to receive regular updates, news and information on courses, events and developments at Ulster University.

We’ll not share your information and you can unsubscribe at any time.

About this course

In this section

About

Core modules • Bioinstrumentation • Biomaterials 1 • Tissue engineering • Research Methods & Facilities Core modules • Composite engineering • Polymer technology • Process product optimisation • Research Methods and Facilities

Students can then tailor the course to their needs and interests by selecting from a wide range of optional modules.

Attendance

The full-time MSc takes one calendar year to complete and consists of two taught terms with a substantial research project during the summer semester. The MSc can also be undertaken in a part-time day release mode. Part-time students who are in full-time employment will be able to gain credit for work-based activity in the work-based learning modules that are a feature of the programme.

Start dates

  • September 2017
  • January 2018
How to apply

Modules

Here is a guide to the subjects studied on this course.

Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.

In this section

Year one

Biomaterials 1

Year: 1

This module provides the student with the core skills required to critically appraise the composition, properties and function of synthetic biomaterials in the context of the relevant materials science considerations. Issues relating to the regulation of biomaterials, as used in relevant medical devices and the implications of the relevant FDA (USA) and Medical Device Directives (EU) legislation are also covered. Students will also develop skills to enable them to provide a considered opinion regarding the choice of biomaterials for specific clinical applications by considering a number of case studies.

Bioinstrumentation

Year: 1

This module provides students with the necessary skills to understand and develop medical engineering devices and provides in-depth knowledge of the regulatory procedures governing their implementation.

Tissue Engineering

Year: 1

This module provides the student with the skills required to critically appraise the composition, properties and function of tissue engineered products within the context of the relevant biological and materials science considerations. Issues relating to the ethics and regulation of tissue engineering and the implications of the relevant FDA (USA) and Medical Device Directives (EU) legislation are also covered. Students will also develop skills to enable them to provide a considered opinion regarding the choice of scaffolds, cells, stimulatory factors and bioreactor environment for specific applications by considering a number of case studies.

Research Methods & Facilities

Year: 1

The module proves the underpinnings in research methods required to design and conduct original postgraduate level research programmes. in addition the module aims to develop in-depth knowledge and advanced expertise in the use of specific advanced research facilties.

Composite Engineering

Year: 1

This module is optional

At the end of the module the student should have acquired a high level of competence the many facets of composite materials and their processing methods leading to an active role as a member of a Production Management or Research team. The student should have the ability to select between competing 'composite' technologies for specific applications and hence be in a position to devise conversion systems and associated quality assurance procedures, having regard to maximising cost effectiveness and product reliability.

Mechanics of Sheet Metal Forming

Year: 1

This module is optional

An introduction to the theory of engineering plasticity applied to common sheet metal forming processes. The relevant theories are presented and their application to real industrial processes are emphasised.

Year two

Embedded Systems RTOS Design

Year: 2

This module is optional

This module enables the student to design and implement cost-effective reliable real-time embedded systems that can be shown to meet the current industry performance, reliability and safety standards.

Digital Signal Processing

Year: 2

This module is optional

This module enables the student to understand, design apply and evaluate digital signal processing algorithms.

Micro- & Nano-Scale Devices

Year: 2

This module is optional

The course provides an in depth knowledge of micro and nanofabrication techniques using elements from surface science, nanoscience and nanotechnology, plasmas and thin films, biosensors, tissue engineering and biomaterials.

Nanoscale Analysis & Metrology

Year: 2

This module is optional

This module focuses on nano and micro-scale analysis and metrology. The principle of operation and limitation of each technique are explained, the applications to the nanotechnology arena are described.

Manufacturing systems

Year: 2

This module is optional

This module provides a concise review of modern manufacturing, time compression methodologies and current manufacturing systems - their specification, implementation and development. The flow of data within a product lifecycle is analysed from design through to manufacture and the effective utilisation of advanced manufacturing technology addressed.

Work based learning 1

Year: 2

This module is optional

A Work Based Learning module is defined as a period of work based learning, normally of not less than 150 hours, supervised by a member of academic staff of the University. Part-time students working as professionals in industry are often required to do work which is academically challenging. As a result they frequently gain knowledge, techniques and skills, and acquire expertise, which is equivalent to work at post-graduate level. This module is designed to provide a framework within which such personal development and achievement can be recognised by the award of academic credit.

Finite Element Analysis and Computational Fluid Dynamics

Year: 2

This module is optional

An introduction to continuum modelling approaches will enable students to understand the concepts and applications of finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) modles. Specific skills will be developed using commercially available software in both FEA and CFD.An introduction to continuum modelling approaches will enable students to understand the concepts and applications of finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) modles. Specific skills will be developed using commercially available software in both FEA and CFD.

Quality Improvement

Year: 2

This module is optional

This module considers modern approaches to Quality Improvement. The context of product or service is set for the interpretation of Quality from different perspectives. The Quality topics are considered under the themes of definition, measurement, actions, improvement and control. Modern and traditional management approaches are evaluated and techniques appropriate to product or service characteristics and organisation performance are considered.

Entrepreneurship (Engineering)

Year: 2

This module is optional

In this module students are engaged in applying their knowledge of entrepreneurship and the entrepreneurial process in resolving some of the practical problems inherent in enterprise development and new venture creation.

Work based learning 2

Year: 2

This module is optional

A Work Based Learning module is defined as a period of work based learning, normally of not less than 150 hours, supervised by a member of academic staff of the University. Part-time students working as professionals in industry are often required to do work which is academically challenging. As a result they frequently gain knowledge, techniques and skills, and acquire expertise, which is equivalent to work at post-graduate level. This module is designed to provide a framework within which such personal development and achievement can be recognised by the award of academic credit.

Computer Aided Engineering for Managers

Year: 2

This module is optional

This module provides a concise and application based overview of current computer aided engineering systems by providing a detailed summary of current rapid-prototyping and manufacturing processes, multi-axis advanced manufacturing technologies, digital inspection and simulation. The application of CAE to enhance the product lifecycle will be the fundamental objective of this module. The integration of these systems from new product introduction (NPI) through to digital inspection will be addressed.

Polymer Technology

Year: 2

This module is optional

At the end of the module the student should be able to critically appraise alternative thermoplastic conversion and fabrication processing routes. Through analysis of processing behaviour, they should be capable of developing appropriate strategy for selection of conversion routes for a range of representative material systems and applications in terms of total economics and quality enhancement.

Process Product Optimisation

Year: 2

This module is optional

At the end of the module the student should be capable of critically assessing the complete polymer or composite system. Using modelling and analysis techniques, they should be capable of designing the complete system to meet a specific performance requirement, thus removing much of the trial and error from the practice.

Year three

Masters Dissertation

Year: 3

This module is designed to enable students to develop and demonstrate the appropriate research and project management skills needed to complete a Masters level dissertation.

Entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

In this section

Entry Requirements

PgDip - Normally, an Honours or non-Honours degree or postgraduate diploma/certificate in a relevant engineering, technology or science discipline. In exceptional circumstances, where an individual has substantial and significant working/industrial experience, a portfolio of written evidence may be considered as an alternative entrance route. It is possible to transfer onto the MSc version of the course after successfully completing the PGDip.

MSc - Specific details on the admission criteria can be found at the course webpage provided below. Normally, a second class honours degree or better in a relevant engineering, science, physics or technology discipline. Or a postgraduate diploma/certificate in a relevant engineering or technology discipline. In exceptional circumstances, where an individual has substantial and significant working/industrial experience, a portfolio of written evidence may be considered as an alternative entrance route.

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Teaching and learning assessment

The course is delivered through lectures, tutorials and laboratory classes and is supported with extensive online content. The small class sizes provide an excellent learning environment and the material is assessed thorough formal examinations, coursework, class tests and presentations.

Exemptions and transferability

Students can apply for exemptions for specific modules based on prior learning.

Careers & opportunities

In this section

Career options

Upon successful completion of the programme students will be more employable, particularly within the industry. Another important opportunity for MSc students is the academic career and/or research career through a PhD programme such as those offered within the school.

Work placement / study abroad

Part-time students can undertake work-based learning modules. We have close links with the vibrant medical device sector with past graduates working in many key companies. Our students have the opportunity to learn directly from industry in an optional semester 2 module, which includes industrial guest speakers.During the dissertation, which runs throughout the yearlong course, students will undertake original research and be mentored as part of an existing research group. The research facilities within the school include a comprehensive suite of analytical equipment including several electron microscopes, cell biology, tissue engineering, nanoparticle and cardiology laboratories, and a comprehensive 3D printing suite.

Professional recognition

Institution of Engineering and Technology (IET)

Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Apply

How to apply Request a prospectus

Applications to our postgraduate courses are made through the University’s online application system.

Start dates

  • September 2017
  • January 2018

Fees and funding

In this section

Fees (total cost)

Important notice - fees information Please note fees displayed are for 2017/18 Academic Entry. Fees are correct at the time of publishing. Additional mandatory costs are highlighted where they are known in advance. There are other costs associated with university study.
View Ulster University’s 2017 fees policy

Northern Ireland & EU:
£5,290.00
International:
£13,240.00  Scholarships available

Scholarships, awards and prizes

A postgraduate Tuition Fee loan is available to N.Ireland, UK and EU students. More details are available at:

https://www.ulster.ac.uk/ulster-life/study-at-ulster/postgraduate/postgraduate-tuition-fee-loan

Additional mandatory costs

Tuition fees and costs associated with accommodation, travel (including car parking charges), and normal living are a part of university life.

Where a course has additional mandatory expenses we make every effort to highlight them. These may include residential visits, field trips, materials (e.g. art, design, engineering) inoculations, security checks, computer equipment, uniforms, professional memberships etc.

We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. Computer suites and free wifi is also available on each of the campuses.

There will be some additional costs to being a student which cannot be itemised and these will be different for each student. You may choose to purchase your own textbooks and course materials or prefer your own computer and software. Printing and binding may also be required. There are additional fees for graduation ceremonies, examination resits and library fines. Additional costs vary from course to course.

Students choosing a period of paid work placement or study abroad as part of their course should be aware that there may be additional travel and living costs as well as tuition fees.

Please contact the course team for more information.

Contact

Course Director: Dr D.Dixon

T: +44 (0)28 9036 6153

E: d.dixon@ulster.ac.uk