Electrical and Electronic Engineering

BEng (Hons)

2023/24 Full-time Undergraduate course

Award:

Bachelor of Engineering with Honours

Faculty:

Faculty of Computing, Engineering and the Built Environment

School:

School of Computing, Engineering and Intelligent Systems

Campus:

Magee campus

UCAS code:

H602
The UCAS code for Ulster University is U20

Start date:

September 2023

This course is now closed for International applications for September 2023

Overview

This course offers students a broad engineering experience designed to suit the current needs for Electrical and Electronic Engineering.

Summary

The BEng Hons Electrical and Electronic Engineering degree will prepare you to become a professional electrical engineer, working on electrical products and systems, from research and design to installation. It will be your job to deal with the input of power to electrical systems, as well as with data acquisition and gathering.

You will be qualified to work in many areas, including power generation and control, transportation, IT, manufacturing, construction and telecommunications.

Most electrical engineers work with large-scale electrical systems, such as using electricity to transmit energy, however a wide range of technologies are being developed, from household appliances and installing lighting within buildings, to power stations and satellite communications.

The course has a built-in year of work experience, where students work in industry during their third year, making it a highly practical degree with highly trained graduates.

The course is accredited by the Institute of Engineering and Technology (IET) which contributes to achieving Chartered Engineer status. Year 1 students on this course are eligible to apply for the NIE Networks Scholarship.

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.

About this course

About

This course aims to prepare graduates to contribute to the electronic and electrical power industry. The course will develop theoretical and practical skills in electronics, power and renewable energy engineering which are widely sought after across the wider engineering sector.

Year 1 provides an understanding of fundamental electrical and electronic engineering principles. It equips students with additional mathematical skills, identifies the potential of computer-based information handling, analysis and graphics, and develops the skills necessary for effective communication. Topics covered include electrical circuits, engineering mathematics, electrical systems, electrical technology, design and CAE and professional studies.

Year 2 builds on those skills developed in year 1. Students’ analytical skills are enhanced through their involvement in a wide range of engineering situations and roles. In the field, engineers will be expected to prepare project specifications, undertake research, create test procedures, write reports and interpret data. Modules offered are: control theory and applications, engineering analysis, electrical services, microprocessor design, power and communications.

Year 3 Industrial placement. The third year is spent on Industrial Placement, an integral and compulsory part of the course. The student works as a trainee engineer in a relevant company and is paid an attractive salary. During placement, students develop key skills including project management, leadership and communication, as well as commercial awareness, which are crucial to being a professional electrical engineer.

Year 4 Students in their final year will study topics which include industrial automations and control, design, industrial applications and undertake a final year project.

Associate awards

Diploma in Professional Practice DPP

Diploma in International Academic Studies DIAS

Diploma in Professional Practice International DPPI

Attendance

Attendance is full-time and is normally spread over a week. There are 12 weeks of teaching each semester and in full-time mode students cover 2 semesters per year. Between semesters students complete exams. Details of teaching times and dates are available on request.

Each student must complete 120 credits (usually 6 modules) in each academic year, with the exception of placement year (60 credits). Years 1, 2 and 4 are spent in the University. Modules are taught on campus and are web-supplemented. In Year 3, students undertake a years work experience.

Start dates

  • September 2023

Teaching, Learning and Assessment

Formal lectures are supplemented by tutorials and laboratory investigations, as appropriate. Practical hands on laboratory sessions are an integral part of many modules throughout all years of the course. Case studies, groupwork and mini-projects are also extensively used. In the final year there is a major individual project.

Generally, a combination of continuous assessment and examination is employed in each module. Continuous assessment includes class tests, library and laboratory based assignments, and individual and group project work. Some modules across all years of the course are continuously assessed.

Academic profile

The University employs over 1,000 suitably qualified and experienced academic staff - 59% have PhDs in their subject field and many have professional body recognition.

Courses are taught by staff who are Professors (25%), Readers, Senior Lecturers (20%) or Lecturers (55%).

We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic staff (81%) are accredited fellows of the Higher Education Academy (HEA) by Advanced HE - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.

The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise.  The precise staffing for a course will depend on the department(s) involved and the availability and management of staff.  This is subject to change annually and is confirmed in the timetable issued at the start of the course.

Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.

Figures correct for academic year 2021-2022.

Magee campus

Accommodation

Enjoy student life in one of Europe's most vibrant cities.

Find out more - information about accommodation  


Sports Facilities

Our facilities in Magee cater for many sports ranging from archery to volleyball, and are open to students and members of the public all year round.

Find out more - information about sport  


Student Wellbeing

At Student Wellbeing we provide many services to help students through their time at Ulster University.

Find out more - information about student wellbeing  


Derry~Londonderry Campus Location

Derry ~ Londonderry campus offers an intimate learning environment.

Find out more about our Derry~Londonderry Campus.

Campus Address

Ulster University,
Northland Rd,
Londonderry
BT48 7JL

T: 02870 123 456

Modules

Here is a guide to the subjects studied on this course.

Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.

Year one

Computer Hardware and Operating Systems

Year: 1

Differences in the internal structure and organisation of a computer lead to significant differences in performance and functionality, giving rise to an extraordinary range of computing devices, from hand-held computers to large-scale, high-performance machines. This module addresses the various options involved in designing a computer system, the range of design considerations, and the trade-offs involved in the design process.

Mathematics for Engineering I

Year: 1

This module provides students with a solid foundation in the fundamental topics in engineering mathematics. The material develops the student's competencies in the essential mathematics that forms an integral part of an undergraduate honours degree in engineering related disciplines.

Electricity and Magnetism

Year: 1

This module will introduce the fundamental concepts of electrostatic and electromagnetic, related rules, electric and magnetic materials and their characteristics, and their applications in physical systems.

Programming for Engineering

Year: 1

This module provides students with a solid foundation in developing software programs using a procedural programming language. It utilises a middle-level language to enable the engineering student to understand the relationship between software programs and the underlying hardware on which the program operates, whilst learning the key concepts and skills relevant to many modern high-level languages.

Digital Electronics

Year: 1

This module introduces the fundamentals of digital electronic devices and simple logic circuits as well as basic logic design techniques. The module introduces the student to basic digital electronics principles presented using a combination of lectures, tutorials and practical laboratories and are assessed using continuous assessment in the form of a written class test and lab practical assessments.

Circuit Analysis I

Year: 1

This module provides an introduction to the key electronic components, the basic concepts of electronic circuit design and the basic principles of electronic circuit testing and measurement taking. This module introduces the student to analogue electronics principles presented using a combination of lectures, tutorials and practical laboratories and are assessed using continuous assessment in the form of a class test and lab practical assessments.

Year two

Microcontroller Systems

Year: 2

This module introduces micro-controllers/programmable logic controllers and the principles of modern interfacing to sensors and actuators. The module also discusses performance issues related to the interrupt and non-interrupt based software programming. Both elements of the module are presented through lectures, tutorials, and practical sessions and are assessed using continuous assessment methods.

Mathematics for Engineering II

Year: 2

This module introduces students to the essential mathematics with appropriate numerical computing and programming required for embarking on further study in engineering or a related discipline. It develops the students mathematical skills required to solve problems that arise in the context of their undergraduate study. The module content is introduced in a pragmatic way and then related to real world problems, which enhances understanding and makes the concepts more meaningful and relevant for the student. The module also aims to generate in the student a spirit of mathematical investigation and discovery leading to the development of mathematical confidence. An introduction is given to MatLab, the multi-paradigm numerical computing environment and fourth-generation programming language; assessment in also partially completed in MatLab.

Professional Development

Year: 2

This module is designed to equip students with the appropriate research and transferable skills needed to secure employment within the Computing and Engineering domain.

The module prepares students for professional work by developing knowledge of the responsibilities and obligations of employees, employers and clients as determined by codes of professional conduct. Students will have the opportunity to practise the presentation of themselves in, for example, application forms, curriculum vitae, interview, elevator pitches and aptitude tests.

The module provides an underpinning foundation of research concepts, methods and techniques necessary for project development and delivery. The students employ research skills developed during the module to gather research from a variety of sources and critically review this literature. Embedded in all these activities is the reinforcement of the need for adhering to recognised ethical standards and taking a professional approach to employability.

Engineering of Control Systems and Signals

Year: 2

This level 5 module will endow engineering students with the knowledge and skills to analyse and design control systems and signal processing systems.

Electrical & Electronic Machines

Year: 2

This module is designed to further develop the students understanding of Electrical Machines, and their practical understanding of the design and implementation of control circuitry to drive such machines. It is presented via lectures and practical laboratory elements and is assessed using continuous assessment methods.

Circuit Analysis II

Year: 2

This module introduces the principles of design of analogue and digital building blocks which can be integrated to form electronic systems of moderate complexity. The module also discusses issues related to the interfacing of analogue and digital signals. Both elements of the module are presented through lectures, tutorials and practicals and are assessed using both continuous assessment and formal written examination methods.

Power Systems Analysis

Year: 2

Building on the fundamentals covered in ENE123 (EEE186 Magee), the aim is to develop design skills in the technologies and energy engineering involved with electricity generation, its supply, distribution and end use of electricity, both in a domestic and industrial context.

Year three

International Academic Studies

Year: 3

This module is optional

This module provides an opportunity to undertake an extended period of study outside the UK and Republic of Ireland. Students will develop an enhanced understanding of the academic discipline whilst generating educational and cultural networks.

Placement - Magee Engineering

Year: 3

This module is optional

This module is a year's paid industrial placement programmed to complement the undergraduate engineer's academic studies. The student will be employed as a junior engineer to enable improvement in their understanding of the work environment and development of their transferable, communication and personal skills. The experience will enhance their engineering ability, maturity and eventual employability.

This module provides undergraduate students with an opportunity to gain structured and professional work experience, in a work-based learning environment, as part of their planned programme of study. This experience allows students to develop, refine and reflect on their key personal and professional skills. The placement should significantly support the development of the student's employability skills, preparation for final year and enhance their employability journey.

Year four

Final Year Project

Year: 4

Students are required to undertake a major project during the final year of the course. The module offers students an opportunity to develop a realistic and meaningful piece of work during their final year. This module allows a chosen subject area to be researched in depth and a solution developed as a consequence. Students will have the opportunity to integrate and apply the learning achieved from other modules in the course. The module runs during both semesters and allows students to develop a comprehensive approach to all aspects of working on a large project. The project encourages innovation and creative thinking in the development of the solution. It also develops the entrepreneurial mindset, which can influence the challenges undertaken and final decisions made.

Programmable Logic Systems

Year: 4

This module is designed to reinforce and further develop a student's digital design and implementation skills. It is presented via lectures, tutorials, seminars and practicals and is assessed using continuous assessment methods.

Renewable Energy & Smart Grids

Year: 4

The module covers theoretical and practical aspects of power systems with a large proportion of decentralised energy production.

Industry 4.0

Year: 4

This module advances the understanding of Internet of Things in an Industrial context as Industry 4.0, encapsulating the trends and technologies that are transforming the way manufacturing and production operations manage their processes. Its focuses on how data is produced, stored, processed, analysed, and exchanged between operational systems inside industrial plants and in the cloud. The elements of the module are presented through lectures, tutorials and practical sessions and are assessed using continuous assessment methods.

Microelectronics

Year: 4

This module is optional

This module provides students with a graduate level understanding of semiconductor materials and microelectronics circuit performance. Additionally students will be analytically proficient in microelectronic circuit analysis techniques and be able to produce design equations for temperature stability of these circuits. The module will teach the concept of interconnect delay and noise using models of delay lines circuit noise. All teaching material will be supported with lab simulations.

Power Systems Analysis

Year: 4

This module is optional

This module covers the principle concepts of analysis and protection of modern power systems. It builds upon the operation of power systems under normal operations, fault analysis and principle of power system protection.

Standard entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

A level

Grades BBC

One subject from Chemistry, Technology and Design, Design and Technology, Double Award Life and Health Sciences, Double Award Science/Applied Science, Engineering or Electronics.

Reduced offer: Grades CCC

Onesubjectfrom Mathematics, Further Mathematics or Physics.

Applied General Qualifications

QCF Pearson BTEC Level 3 Extended Diplomain a relevant engineering subject area / OCR Cambridge Technical Level 3 Extended Diplomain a relevant engineering subject area (2012 Suite)

Award profile of DDD; to include a Merit in either Mathematics for Engineering Technicians OR Further Mathematics for Engineering Technicians, ANDa Merit in Mechanical Principles and Applications.

OR

RQF Pearson BTEC Level 3 National Extended Diplomain a relevant Engineering subject area (2016 suite)

Award profile of DMM; to include a Merit in either Mathematics for Engineering Technicians OR Further Mathematics for Engineering Technicians, ANDa Merit in Mechanical Principles and Applications.

The following qualifications are acceptable in particular combinations and/or with A-Level(s) -

NB Subject requirements must be met as outlined above.
BTEC Level 3 QCF Subsidiary Diploma, BTEC RQF National Extended Certificate,
BTEC Level 3 QCF 90-credit Diploma, BTEC Level 3 RQF National Foundation Diploma,
BTEC Level 3 QCF Diploma, BTEC Level 3 RQF National Diploma.

Entry equivalences can also be viewed in the online prospectus at http://www.ulster.ac.uk/apply/entrance-requirements/equivalence

Please contact Admissions (contact details below) for further information about acceptable combinations for entry to this course.

Irish Leaving Certificate

112 UCAS tariff points to include a minimum of five subjects (four of which must be at higher level) to include English at H6 if studied at Higher level or O4 if studied at Ordinary Level.

Course Specific Subject requirements

This course also requires you to achieve H2 in one of the following: Mathematics, Physics, Chemistry, Physics/Chemistry, Biology, Technology, Engineering or Technology and Design.

If Mathematics is not passed at H2, you will be required to achieve a minimum of H6 if studied at Higher level or O4 if studied at Ordinary Level in addition to one of the subjects above

Irish Leaving Certificate UCAS Equivalency

Scottish Highers

Grades BBCCC (to include minimum of BB in Mathematics and a science subject).

English & Maths required at Standard Grade 1,2 or 3.

Scottish Advanced Highers

Grades CCD(to include Mathematics and a science subject).

English & Maths required at Standard Grade 1,2 or 3

International Baccalaureate

Minimum 25 points (12 at Higher Level to include Grade 5 HL Mathematics and another HL Science subject)

Higher or Subsidiary level in English Language required at Grade 4 or above.

Access to Higher Education (HE)

Access Diploma

Overall profile of 63% (120 credit Science/Technology Access Course) (NI Access Course); to include a 20 credit Level 2 Mathematics module, passed at 40% or successful completion of NICATS Mathematics as part of the pre-2021 Access Diploma.

Overall profile of 15 credits at distinction and 30credits at merit (60 credit Science/Technology Access Course) (GB Access Course); to include a 20 credit Level 2 Mathematics module, passed at 40% or successful completion of NICATS Mathematics as part of the pre-2021 Access Diploma.

GCSE

For full-time study, you must satisfy the General Entrance Requirements for admission to a first degree course and hold a GCSE pass at Grade C/4 or above in English Language (or equivalent).

Level 2 Certificate in Essential Skills - Communication will be accepted as equivalent to GCSE English.

GCSE Maths requirements

GCSE Mathematics Grade C/4 or above (or equivalent)

Please note that for purposes of entry to this course Level 2 Application of Number is NOT regarded as an acceptable alternative to GCSE Maths.

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Additional Entry Requirements

OCR/Cambridge Technical Combinations
The University accepts a range of alternative combination of qualifications including OCR Nationals and OCR Cambridge Technicals. However these qualifications do not satisfy the subject requirements for this course but can be used for grade purposes in combination with BTec/A-level subjects which meet the subject requirements (see above for more information).

HNC in Electrical, Electronic, Manufacturing or Mechanical Engineering subject

Overall distinction (with distinctions in 75 Level 4 credits) for year 1 entry only

HNDin Electrical, Electronic, Manufacturing or Mechanical Engineering subject

Overall Merit (with distinctions in 45 Level 5 credits)

HND applications may be considered for Year 2 entry where the curriculum sufficiently matches that of the Ulster University full-time Year 1 course.

Ulster Foundation Degreein relevant engineering related subject
Pass with overall 50% and minimum 50% in all taught level 5 modules. Applicants will normally be considered for entry to an associated Honours degree (Year 2 entry).

For further information regarding all of the above qualifications please contact Admissions -see contact details below.

Entry equivalences can also be viewed in the online prospectus at http://www.ulster.ac.uk/apply/entrance-requirements/equivalence

Exemptions and transferability

Transfer between this course and other similar courses within the Faculty of Computing, Engineering and the Built Environment may be possible on the basis of academic performance.

Exemption from parts of the course may be considered based on appropriate performance in a related, designated course or other approved experiential learning (APEL).

The course has been designed to enable students who graduate with a good honours degree to apply for postgraduate study towards a PhD, MSc, MRes or other higher qualification.

Careers & opportunities

Career options

Job prospects in a wide range of engineering industries are excellent with the majority of graduates finding employment within six months of graduation. Graduates with BEng Hons, first class or upper second class award all satisfy the requirements for a wide range of postgraduate research posts and scholarships.

Work placement / study abroad

In Year 3, the student will undertake a period of paid placement in an industrial or academic setting. Placement is compulsory and seen as an integral part providing the student the opportunity to develop into a junior engineer.

Apply

Start dates

  • September 2023

Fees and funding

Fees (per year)

Northern Ireland, Republic of Ireland and EU Settlement Status Fees

£4,710.00

England, Scotland, Wales and the Islands Fees

£9,250.00

International Fees

£15,840.00

Scholarships, awards and prizes

This course is suitable for a number of student support awards. Please contact the course director for further information.

Faculty Prizes can be viewed at: Ulster University Student Prizes and follow the links to the Faculty of Computing, Engineering and the Built Environment.

Additional mandatory costs

It is important to remember that costs associated with accommodation, travel (including car parking charges) and normal living will need to be covered in addition to tuition fees.

Where a course has additional mandatory expenses (in addition to tuition fees) we make every effort to highlight them above. We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals, as well as first-class facilities and IT equipment. Computer suites and free Wi-Fi are also available on each of the campuses.

There are additional fees for graduation ceremonies, examination resits and library fines.

Students choosing a period of paid work placement or study abroad as a part of their course should be aware that there may be additional travel and living costs, as well as tuition fees.

See the tuition fees on our student guide for most up to date costs.

Contact

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.


For more information visit

Back to Top