NA
NA
In this section
Diploma in Professional Practice DPP
Diploma in International Academic Studies DIAS
Diploma in Professional Practice International DPPI
NA
The content for each course is summarised on the relevant course page, along with an overview of the modules that make up the course.
Each course is approved by the University and meets the expectations of:
As part of your course induction, you will be provided with details of the organisation and management of the course, including attendance and assessment requirements - usually in the form of a timetable. For full-time courses, the precise timetable for each semester is not confirmed until near the start date and may be subject to change in the early weeks as all courses settle into their planned patterns. For part-time courses which require attendance on particular days and times, an expectation of the days of attendance will often be included in the letter of offer. A course handbook is also made available.
Courses comprise modules for which the notional effort involved is indicated by its credit rating. Each credit point represents 10 hours of student effort. Undergraduate courses typically contain 10- or 20-credit modules and postgraduate course typically 15- or 30-credit modules.
The normal study load expectation for an undergraduate full-time course of study in the standard academic year is 120 credit points. This amounts to around 36-42 hours of expected teaching and learning per week, inclusive of attendance requirements for lectures, seminars, tutorials, practical work, fieldwork or other scheduled classes, private study, and assessment. Part-time study load is the same as full-time pro-rata, with each credit point representing 10 hours of student effort.
Postgraduate Masters courses typically comprise 180 credits, taken in three semesters when studied full-time. A Postgraduate Certificate (PGCert) comprises 60 credits and can usually be completed on a part-time basis in one year. A 120-credit Postgraduate Diploma (PGDip) can usually be completed on a part-time basis in two years.
Class contact times vary by course and type of module. Typically, for a module predominantly delivered through lectures you can expect at least 3 contact hours per week (lectures/seminars/tutorials). Laboratory classes often require a greater intensity of attendance in blocks. Some modules may combine lecture and laboratory. The precise model will depend on the course you apply for and may be subject to change from year to year for quality or enhancement reasons. Prospective students will be consulted about any significant changes.
Assessment methods vary and are defined explicitly in each module. Assessment can be via one method or a combination e.g. examination and coursework . Assessment is designed to assess your achievement of the module’s stated learning outcomes. You can expect to receive timely feedback on all coursework assessment. The precise assessment will depend on the module and may be subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.
Coursework can take many forms, for example: essay, report, seminar paper, test, presentation, dissertation, design, artefacts, portfolio, journal, group work. The precise form and combination of assessment will depend on the course you apply for and the module. Details will be made available in advance through induction, the course handbook, the module specification and the assessment timetable. The details are subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.
Normally, a module will have four learning outcomes, and no more than two items of assessment. An item of assessment can comprise more than one task. The notional workload and the equivalence across types of assessment is standardised.
The class of Honours awarded in Bachelor’s degrees is usually determined by calculation of an aggregate mark based on performance across the modules at Levels 5 and 6 (which correspond to the second and third year of full-time attendance).
Level 6 modules contribute 70% of the aggregate mark and Level 5 contributes 30% to the calculation of the class of the award. Classification of integrated Masters degrees with Honours include a Level 7 component. The calculation in this case is: 50% Level 7, 30% Level 6, 20% Level 5. At least half the Level 5 modules must be studied at the University for Level 5 to be included in the calculation of the class.
All other qualifications have an overall grade determined by results in modules from the final level of study. In Masters degrees of more than 200 credit points the final 120 points usually determine the overall grading.
Figures correct for academic year 2019-2020.
The University employs over 1,000 suitably qualified and experienced academic staff - 59% have PhDs in their subject field and many have professional body recognition.
Courses are taught by staff who are Professors (25%), Readers, Senior Lecturers (20%) or Lecturers (55%).
We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic staff (81%) are accredited fellows of the Higher Education Academy (HEA) by Advanced HE - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.
The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise. The precise staffing for a course will depend on the department(s) involved and the availability and management of staff. This is subject to change annually and is confirmed in the timetable issued at the start of the course.
Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.
Figures correct for academic year 2021-2022.
The Belfast campus is situated in the artistic and cultural centre of the city, the Cathedral Quarter.
High quality apartment living in Belfast city centre adjacent to the university campus.
Find out more - information about accommodation
At Student Wellbeing we provide many services to help students through their time at Ulster University.
Find out more - information about student wellbeing
Here is a guide to the subjects studied on this course.
Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.
In this section
Year: 1
Status: C
This module provides students with an understanding of anatomy and physiology that are directly applicable to the area of biomedical engineering.
Year: 1
Status: C
This module will introduce students to studying Biomedical Engineering at Ulster University and will develop some of the foundational knowledge and skills that will enable them to succeed on their degree programme.
Year: 1
Status: C
This module provides an understanding of the language and terminology of mathematics, together with the mathematical techniques from algebra, calculus and statistics that are necessary for the description and analysis of engineering systems.
Year: 1
Status: C
This module will provide an introduction to semiconductor devices and their application in electronic circuits such as power supplies, voltage regulators and simple amplifier circuits. It will also introduce the field of digital electronics, with simple combinational logic circuit analysis and simplification
Year: 1
Status: C
This module provides an introduction to the fundamentals in the use of a modern 3D CAD system to create robust 3D part modules using an introductory range of feature types. This module provides an introduction to product design specification, design, build and analysis/testing of a product as part of a design project, working as part of a team.
Year: 1
Status: C
This module will introduce students to working in multidisciplinary teams to solve a real-world problem and present their solution to an audience of their tutors and peers.
Year: 2
Status: C
This module provides students with a detailed understanding of the important issues relating to the regulatory control of the design, fabrication, manufacture and safe use of medical devices in Europe and the US. It includes information on the design and manufacture of medical devices and equipment. The origins and implementation of various directives in terms of classification, regulatory requirements and the use of standards are provided and demonstrated via an integrated group project approach involving structured exercises related to actual medical devices.
Year: 2
Status: C
This module provides an introduction to the fundamentals of static mechanics and fluid mechanics, with a particular emphasis being placed on the application of this theory to biomedical engineering devices and examples.
Year: 2
Status: C
The module is designed to extend the students understanding of biomedical engineering in terms of medical physiological measurements, medical imaging and clinical diagnosis. The electrical properties of tissue are studied and their importance for a number of clinical situations examined. The development of electrodes for particular purposes is evaluated. Medical devices for a range of physiological and diagnostic applications are studied.
Year: 2
Status: C
This module will equip students with necessary knowledge and hardware-software design skills needed to design/implement microcontroller based embedded systems.
Year: 2
Status: C
This module is designed to introduce engineering students to the basic principles of algorithmic programming, and the solution of engineering problems using MATLAB and Simulink.
Year: 2
Status: C
The module considers creativity in design; product innovation; technical and non-technical aspects of design; sustainability; design analysis techniques for economic product manufacture and assembly; functional analysis; visual design; value engineering; safety and reliability through design projects; manufacturing processes; assembly techniques; market intelligence; component and product inspection and testing. This module builds on the fundamentals of 3D solid part modelling with the introduction of more advanced solid modelling tools, assembly modelling, creation of 2D drawings and incorporation of all these tools and features within a design project, working as part of a team.
Status: O
Year: 3
This module is optional
This module provides undergraduate students with an opportunity to gain structured and professional work experience, in a work-based learning environment, as part of their planned programme of study. This experience allows students to develop, refine and reflect on their key personal and professional skills. The placement should significantly support the development of the student's employability skills, preparation for final year and enhance their employability journey.
Status: O
Year: 3
This module is optional
This module provides an opportunity to undertake an extended period of study outside the UK and Republic of Ireland. Students will develop an enhanced understanding of the academic discipline whilst generating educational and cultural networks.
Status: O
Year: 3
This module is optional
This module provides an opportunity to undertake an extended period of study in the USA; to acquire business and management skills, and to develop educational and social links. Places on the module are limited and subject to a competitive selection procedure.
Year: 4
Status: C
This module prepares the student for the multidisciplinary (physics, chemistry and engineering) nature of biomedical devices. An applied view of sensor principles and associated device fabrication techniques is presented with modern and future medical applications constantly being illustrated.
Year: 4
Status: C
This module provides students with a detailed understanding of the composition, function and application of synthetic and natural biomaterials in the context of the medical implant devices they are used to fabricate. The approach taken highlights the important materials science issues involved in the provision of these systems. The increasing importance of functional biomaterials to the provision of enhanced medical implant devices that can more effectively replace damaged and/or diseased tissues and organs is also addressed.
Year: 4
Status: C
The module provides a knowledge of analogue and digital signal processing of simple level systems;
with particular application to basic signals generated by biological systems.
Status: O
Year: 4
This module is optional
This module gives the student an overview of nanotechnology and its applications in engineering.
Status: O
Year: 4
This module is optional
This module extends the students understanding of the design and creation of software structures using an object-oriented paradigm. The programming language is C++ which is of particular relevance to engineering students.
Status: O
Year: 4
This module is optional
This module will provide knowledge relating to embedded systems from programming to interfacing and relating IoT based applications. More importantly, the focus will be to increase skills of students to develop a design from a paper to a prototype level.
Status: O
Year: 4
This module is optional
This module introduces environmental issues, key aspects and provides coverage of science, technology, design, regulations and management systems pertaining to environmental protection, resource conservation and alternative energy sources.
Status: O
Year: 4
This module is optional
This module is based on the execution of an industrially generated major design project through multi-disciplinary team activity involving aspects of: project management, market analysis, specification, concept design, budget costing, decision making, detail design, production planning, manufacturing requirements and product costing.
Status: O
Year: 4
This module is optional
This module aims to equip students with the knowledge, skills and understanding that will enable them to contribute to the analysis, design and management of modern manufacturing systems. Content includes systems and modelling, sources of variability and the corrupting influence of variability, discrete simulation modelling for system analysis and design; inventory management, production management systems including mrp, JIT and TOC; productivity improvement techniques such as SMED, DMAIC; supply chain management; world class and lean manufacturing; product lifecycle management.
Status: O
Year: 4
This module is optional
This module provides a practical, hands-on experience of Computer Aided Engineering in the context of industrial design and manufacturing. It focuses on advanced part modelling techniques, assembly modelling, creating associative links, good modelling practice, collaboration and interoperability, design documentation, 3D printing, surface modelling, photorealistic rendering, dynamic simulation and Finite Element Analysis. It involves the utilisation of an integrated, state-of-the-art MCAD suite, along with the teaching of the general principles of the aforementioned technologies.
Year: 5
Status: C
The module aims to provide students a sound understanding of biomaterials and their use in a variety of biomedical applications. A range of topics will be explored, including design aspects, biocompatibility and the foreign body response, interfacial properties of biomaterials, and factors affecting cellular response as well as medical device regulations and commercialisation. Also, contemporary topics in biomaterials will be covered, such as nanobiomaterials, advanced biomaterials characterisation techniques, nanomedicine, and drug delivery. Furthermore, this module will include also a large project component, which allows the students to develop advanced knowledge and research skills in a specialised area.
Year: 5
Status: C
This module provides the student with the skills required to critically appraise the composition, properties and function of tissue engineered products within the context of the relevant biological and materials science considerations. Issues relating to the ethics and regulation of tissue engineering and the implications of the relevant FDA (USA) and Medical Device Directives (EU) legislation are also covered. Students will also develop skills to enable them to provide a considered opinion regarding the choice of scaffolds, cells, stimulatory factors and bioreactor environment for specific applications by considering a number of case studies.
Year: 5
Status: C
A module which integrates lectures with group activities in the study of the basics of research methods and management processes. The student will consolidate their learning of research methodologies, management processes, data processing, literature review, report and dissertation writing.
Year: 5
Status: C
This module is designed to equip students with the appropriate research and project management skills needed to complete an MEng level project and prepares them to be able to contribute positively in their first engineering graduate employment.
An ethos of professionalism can be developed and demonstrated in the way that earlier learned material can be successfully applied in engineering applications; this can continue after graduation and is an essential requirement of a practising Chartered Engineer.
Students are expected to design the project in collaboration with their supervisor. They will be responsible for carrying out the project and writing up and presenting their work in the form of an oral/poster presentation and a final written dissertation.
Status: O
Year: 5
This module is optional
This module enables the student to understand, design apply and evaluate digital signal processing algorithms.
Status: O
Year: 5
This module is optional
The course provides an in depth knowledge of micro-nanodevices, as well as micro and nanofabrication techniques using elements from nanoscience and nanotechnology.
Status: O
Year: 5
This module is optional
To provide participants with the capability to improve the competitiveness of companies through entrepreneurship practice and new product and/or process innovation. A major team design project is addressed derived from a real problem from within a local/global manufacturing company. Material covered is supported through tutorial, lecture and workshop sessions as appropriate.
Status: O
Year: 5
This module is optional
Two of the most important developments in manufacturing in the 21st century are Additive Manufacturing and the 4th Industrial Revolution (Industrie 4.0). In this module, students will be introduced to these two strands of advanced manufacturing and will develop the skills and knowledge to engage with these concepts in an industrial context.
Status: O
Year: 5
This module is optional
This module in thermal fluid sciences covers external flow, turbulence and heat transfer and an introduction to CFD modelling and
Status: O
Year: 5
This module is optional
This module considers modern approaches to Quality Improvement. The context of product or service is set for the interpretation of Quality from different perspectives. The Quality topics are considered under the themes of definition, measurement, actions, improvement and control. Modern and traditional management approaches are evaluated and techniques appropriate to product or service characteristics and organisation performance are considered.
Status: O
Year: 5
This module is optional
This module provides a concise and application based overview of current computer aided engineering systems by providing a detailed summary of current rapid-prototyping and manufacturing processes, multi-axis advanced manufacturing technologies, digital inspection and simulation. The application of CAE to enhance the product lifecycle will be the fundamental objective of this module. The integration of these systems from new product introduction (NPI) through to digital inspection will be addressed.
Status: O
Year: 5
This module is optional
At the end of the module the student should be able to critically appraise alternative thermoplastic conversion and fabrication processing routes. Through analysis of processing behaviour, they should be capable of developing appropriate strategy for selection of conversion routes for a range of representative material systems and applications in terms of total economics and quality enhancement.
We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.
In this section
The A Level requirement for this course is grades ABB to include Mathematics and one from Physics, Chemistry, Biology, Technology & Design, Design & Technology, Engineering, Life & Health Science (single or double) or Double Award Science/Applied Science. D
Applicants presenting A Level Physics will receive a one grade reduction at the time of offer i.e. BBB.
Successful completion of BTEC Level 3 QCF Extended Diploma in Engineering, Science or Applied Science (inc Forensic Science & Medical Science) with overall award profile D*DD.
Successful completion of BTEC Level 3 RQF Extended Diloma is Engineering/Applied Science with overall award profile DDM.
128 UCAS Tariff points to include a minimum of five subjects (four of which must be at Higher Level) to include English at H6 and Maths at H5 if studied at Higher level or O4 and O3 if studied at Ordinary Level.
Course Specific Subject Requirements
Higher Level subjects must include Mathematics and one other Higher Level subject from Physics, Chemistry, Physics/Chemistry, Biology, Technology, Engineering, Computing or Design & Communication Graphics
The Scottish Highers requirement for this course is grades BBBBC (to include minimum of BB in Maths and another science subject).
The Scottish Advanced Highers requirement for this course is grades BBC (to include Maths and a science subject).
Overall International Baccalaureate profile minimum 27 points (13 at higher level) to include minimum grade 6 in HL Maths and grade 5 in another HL subject. Grade 4 in English Language is also required in overall profile.
MEng entry not available directly from Access course
GCSE Mathematics Grade C, 4 or above
GCSE English Language Grade C, 4 (or equivalent). PLUS
GCSE Grades CC, 44 in Double Award Science OR in both GCSE Science and Additional Science OR in 2 of the following GCSE subjects, Physics, Chemistry, Biology, Science, Technology and Design, Statistics (or equivalent ).
NOTE:
All applicants presenting BTECs as the subject require Distinction in all relevant Maths modules
English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.
Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.
2023/24 Fees
Fees for entry in 2023/24 have not yet been set. See our tuition fees page for the current fees for 2022/23 entry.
It is important to remember that costs associated with accommodation, travel (including car parking charges) and normal living will need to be covered in addition to tuition fees.
Where a course has additional mandatory expenses (in addition to tuition fees) we make every effort to highlight them above. We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals, as well as first-class facilities and IT equipment. Computer suites and free Wi-Fi are also available on each of the campuses.
There are additional fees for graduation ceremonies, examination resits and library fines.
Students choosing a period of paid work placement or study abroad as a part of their course should be aware that there may be additional travel and living costs, as well as tuition fees.
See the tuition fees on our student guide for most up to date costs.
Course Director:
Dr George Burke
Admissions Contact: Ruth McKeegan
T: +44 (0)28 9536 5782
International Admissions
T:+44(0)28 7012 3333
E: internationaladmissions@ulster.ac.uk