Create a more sustainable world with renewable energy engineering. Refine and rethink clean energy sources such as wind, biomass, solar, and hydro.
This 4 year BEng Hons course prepares students for work within the emerging renewable energy industry and will allow you to make a difference in the world. Graduates will join a body of engineers with the vision and skills necessary to design and manufacture engineering systems and machines for the renewables industry. You will learn how to think innovatively and turn your ideas into useable technology.
Graduates with this mix of mechanical design, electronics, power systems and renewable energy engineering experience have many career opportunities available to them in this emerging sector. The course has a built-in year of work experience, where students work in industry during their third year, making it a highly practical degree.
So whether you want to engineer the next generation of renewable power systems or drive change and create ‘green cities’ then this degree will give you the knowledge and skills to do so.
Sign up to register an interest in the course.
In this section
Students undertake six introductory modules in year 1, covering subjects like mechanical design, renewable energy electronics and mathematics. Practical learning is used to demonstrate the engineering principles behind the topics.
In year 2, six core modules extend students’ knowledge of power generation systems and electronics. Turbine technologies covering all aspects of rotary power generations offer an in-depth knowledge of renewables power generations via this technology.
Year 3 is normally a period of industrial placement. Students can choose to work in the UK, Ireland or Europe. Students can also study in the USA. These options lead to either the Diploma in Professional Practice (placement year), or the Diploma in International Studies if the year is spent studying abroad.
Year 4 enables students to explore engineering topics in more depth and there are optional modules to allow students to focus on different aspects of the sector. The final year also includes a major project to further advance and integrate technical and academic skills.
Innovation and entrepreneurship are important drivers for Renewable Energy Engineering and are taught as part of the course, along with ethics, risk and sustainability. These topic areas are all dependent on advances in materials science, computer aided engineering and fundamental science, and the course will focus on these core areas whilst utilising expertise from the Centre for Sustainable Technologies(CST) and the Nanotechnology and Advanced Materials Research Institute (NAMRI).
Diploma in Professional Practice DPP
Diploma in International Academic Studies DIAS
Diploma in Professional Practice International DPPI
Find out more about placement awards
Attendance is on a full-time basis and is normally spread over a week. Each student must complete 120 credits (usually 6 modules) in each academic year, with the exception of placement year (60 credits). Years 1, 2, and 4 are spent in the University. Modules are taught on campus and are web-supplemented. In Year 3, students undertake a year's work experience.
Formal lectures are supplemented by tutorials and laboratory investigations, as appropriate. Practical hands on laboratory sessions are an integral part of many modules throughout all years of the course. Case studies, groupwork and mini-projects are also extensively used. In the final year there is a major individual project.
Generally, a combination of continuous assessment and examination is employed in each module. Continuous assessment includes class tests, library and laboratory based assignments, and individual and group project work. Some modules across all years of the course are continuously assessed.
The content for each course is summarised on the relevant course page, along with an overview of the modules that make up the course.
Each course is approved by the University and meets the expectations of:
As part of your course induction, you will be provided with details of the organisation and management of the course, including attendance and assessment requirements - usually in the form of a timetable. For full-time courses, the precise timetable for each semester is not confirmed until close to the start date and may be subject to some change in the early weeks as all courses settle into their planned patterns. For part-time courses which require attendance on particular days and times, an expectation of the days and periods of attendance will be included in the letter of offer. A course handbook is also made available.
Courses comprise modules for which the notional effort involved is indicated by its credit rating. Each credit point represents 10 hours of student effort. Undergraduate courses typically contain 10- or 20-credit modules (more usually 20) and postgraduate course typically 15- or 30-credit modules.
The normal study load expectation for an undergraduate full-time course of study in the standard academic year is 120 credit points. This amounts to around 36-42 hours of expected teaching and learning per week, inclusive of attendance requirements for lectures, seminars, tutorials, practical work, fieldwork or other scheduled classes, private study, and assessment. Part-time study load is the same as full-time pro-rata, with each credit point representing 10 hours of student effort.
Postgraduate Master’s courses typically comprise 180 credits, taken in three semesters when studied full-time. A Postgraduate Certificate (PGCert) comprises 60 credits and can usually be completed on a part-time basis in one year. A 120-credit Postgraduate Diploma (PGDip) can usually be completed on a part-time basis in two years.
Class contact times vary by course and type of module. Typically, for a module predominantly delivered through lectures you can expect at least 3 contact hours per week (lectures/seminars/tutorials). Laboratory classes often require a greater intensity of attendance in blocks. Some modules may combine lecture and laboratory. The precise model will depend on the course you apply for and may be subject to change from year to year for quality or enhancement reasons. Prospective students will be consulted about any significant changes.
Assessment
Assessment methods vary and are defined explicitly in each module. Assessment can be a combination of examination and coursework but may also be only one of these methods. Assessment is designed to assess your achievement of the module’s stated learning outcomes. You can expect to receive timely feedback on all coursework assessment. The precise assessment will depend on the module and may be subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.
Coursework can take many forms, for example: essay, report, seminar paper, test, presentation, dissertation, design, artefacts, portfolio, journal, group work. The precise form and combination of assessment will depend on the course you apply for and the module. Details will be made available in advance through induction, the course handbook, the module specification and the assessment timetable. The details are subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.
Normally, a module will have 4 learning outcomes, and no more than 2 items of assessment. An item of assessment can comprise more than one task. The notional workload and the equivalence across types of assessment is standardised.
Calculation of the Final Award
The class of Honours awarded in Bachelor’s degrees is usually determined by calculation of an aggregate mark based on performance across the modules at Levels 5 and 6, (which correspond to the second and third year of full-time attendance).
Level 6 modules contribute 70% of the aggregate mark and Level 5 contributes 30% to the calculation of the class of the award. Classification of integrated Master’s degrees with Honours include a Level 7 component. The calculation in this case is: 50% Level 7, 30% Level 6, 20% Level 5. At least half the Level 5 modules must be studied at the University for Level 5 to be included in the calculation of the class.
All other qualifications have an overall grade determined by results in modules from the final level of study. In Master’s degrees of more than 200 credit points the final 120 points usually determine the overall grading.
The University employs over 1,000 suitably qualified and experienced academic staff - 59% have PhDs in their subject field and many have professional body recognition.
Courses are taught by staff who are Professors (25%), Readers, Senior Lecturers (18%) or Lecturers (57%).
We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic staff (81%) are accredited fellows of the Higher Education Academy (HEA) - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.
The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise. The precise staffing for a course will depend on the department(s) involved and the availability and management of staff. This is subject to change annually and is confirmed in the timetable issued at the start of the course.
Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.
Figures correct for academic year 2019-2020.
Our vision is aligned to the strategic growth plan for the city and region.
Enjoy student life in one of Europe's most vibrant cities.
Find out more - information about accommodation
Our facilities in Magee cater for many sports ranging from archery to volleyball, and are open to students and members of the public all year round.
Find out more - information about sport
At Student Support we provide many services to help students through their time at Ulster University.
Find out more - information about student support
Here is a guide to the subjects studied on this course.
Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.
In this section
Year: 1
Status: C
This module provides students with a solid foundation in the fundamental topics in engineering mathematics. The material develops the student's competencies in the essential mathematics that forms an integral part of an undergraduate honours degree in engineering related disciplines.
Year: 1
Status: C
This module provides an introduction to the key electronic components, the basic concepts of electronic circuit design and the basic principles of electronic circuit testing and measurement taking. This module introduces the student to analogue electronics principles presented using a combination of lectures, tutorials and practical laboratories and are assessed using continuous assessment in the form of a class test and lab practical assessments.
Year: 1
Status: C
The module provides a firm grounding in energy conversion through fundamental theory demonstrated in the analysis of conventional and renewable energy conversion systems.
Year: 1
Status: C
MEC102 provides the fundamental principles of statics, strength of materials and dynamics in relation to mechanical engineering and provides a methodology for their practical application. Its content includes:
(a) Basic and derived units, static equilibrium, shear forces, bending moments and friction.
(b) Statically stressed systems both determinate and indeterminate, the theory of torsion and bending.
(c) This module provides an understanding of dynamics, and its application to the solution of engineering problems.
(d) The theoretical and practical principles required within each topic area will be developed in lectures and applied in assignments, tests and tutorials.
Year: 1
Status: C
This module includes freehand sketching, systems of projection, drawing conventions,
dimensioning and tolerancing, 3-D digital modelling of parts and assemblies, design
documentation, an introduction to the total design activity, formulation of a product design
specification (PDS), material selection and manufacturing considerations in design
Year: 1
Status: C
A module which integrates formal study with a significant practical programme for the understanding and application of common manufacturing processes.
Year: 2
Status: C
This module is designed to equip students with the appropriate research and transferable skills needed to secure employment within the Computing and Engineering domain.
The module prepares students for professional work by developing knowledge of the responsibilities and obligations of employees, employers and clients as determined by codes of professional conduct. Students will have the opportunity to practise the presentation of themselves in, for example, application forms, curriculum vitae, interview, elevator pitches and aptitude tests.
The module provides an underpinning foundation of research concepts, methods and techniques necessary for project development and delivery. The students employ research skills developed during the module to gather research from a variety of sources and critically review this literature. Embedded in all these activities is the reinforcement of the need for adhering to recognised ethical standards and taking a professional approach to employability.
Year: 2
Status: C
This level 5 module will endow engineering students with the knowledge and skills to analyse and design control systems and signal processing systems.
Year: 2
Status: C
Building on the fundamentals covered in ENE123 (EEE186 Magee), the aim is to develop design skills in the technologies and energy engineering involved with electricity generation, its supply, distribution and end use of electricity, both in a domestic and industrial context.
Year: 2
Status: C
The module provides a general coverage of different classes of engineering materials. Metallic and non-metallic materials are studied with respect to structures, properties, and processing.
Year: 2
Status: C
This module covers major aspects of manufacturing technology including state-of-the-art for subtractive, additive, casting, and deformation processes. In addition, the module covers the technologies implemented in the integration of various manufacturing processes, thereby promoting a comprehensive understanding of manufacturing systems.
Year: 2
Status: C
MEC360 provides an extension of the fundamental principles of the statics and dynamics of mechanical systems in relation to the analysis and solution of mechanical engineering problems. Furthermore, MEC360 provides an introduction to the core principles of thermodynamics.
Year: 2
Status: C
The module considers creativity in design; product innovation; technical and non-technical
aspects of design; safety and product liability; design analysis techniques for economic
product manufacture and assembly; functional analysis; value engineering; safety and
reliability through design projects; manufacturing processes; assembly techniques; material
handling methods; component and product inspection and testing; factory simulation using
computer techniques; computer database application for manufacturing management and
processing; and design applications using 3-D computer graphics
Status: O
Year: 3
This module is optional
This module provides an opportunity to undertake an extended period of study outside the UK and Republic of Ireland. Students will develop an enhanced understanding of the academic discipline whilst generating educational and cultural networks.
Status: O
Year: 3
This module is optional
This module is a year's paid industrial placement programmed to complement the undergraduate engineer's academic studies. The student will be employed as a junior engineer to enable improvement in their understanding of the work environment and development of their transferable, communication and personal skills. The experience will enhance their engineering ability, maturity and eventual employability.
This module provides undergraduate students with an opportunity to gain structured and professional work experience, in a work-based learning environment, as part of their planned programme of study. This experience allows students to develop, refine and reflect on their key personal and professional skills. The placement should significantly support the development of the student's employability skills, preparation for final year and enhance their employability journey.
Year: 4
Status: C
Students are required to undertake a major project during the final year of the course. The module offers students an opportunity to develop a realistic and meaningful piece of work during their final year. This module allows a chosen subject area to be researched in depth and a solution developed as a consequence. Students will have the opportunity to integrate and apply the learning achieved from other modules in the course. The module runs during both semesters and allows students to develop a comprehensive approach to all aspects of working on a large project. The project encourages innovation and creative thinking in the development of the solution. It also develops the entrepreneurial mindset, which can influence the challenges undertaken and final decisions made.
Year: 4
Status: C
The module covers theoretical and practical aspects of power systems with a large proportion of decentralised energy production.
Year: 4
Status: C
Thermal renewable energy technologies are primarily based on combustion or the direct conversion of solar radiation into thermal energy, but also include geothermal heat. They have wider range opportunities than electrical systems due to the widespread demand for low and medium grade heating and cooling in both industrial and domestic situations. This module introduces the students to these concepts and contextualises the issues.
Year: 4
Status: C
This module is based on the execution of an industrially generated major design project
through multi-disciplinary team activity involving aspects of: project management, market
analysis, specification, concept design, budget costing, decision making, detail design,
production planning, manufacturing requirements and product costing.
Status: O
Year: 4
This module is optional
This module covers the principle concepts of analysis and protection of modern power systems. It builds upon the operation of power systems under normal operations, fault analysis and principle of power system protection.
Status: O
Year: 4
This module is optional
This module will permit the student to develop their understanding in the scientific and mathematical principles that underpin three areas of mechanical sciences: Strength of Materials and Mechanical vibration theory.
Formal lectures, directed reading exercises, tutorial sessions, informal class quizzes, peer discussion groups, and practical computer laboratory demonstrations will form the learning activities that will lead to the intended learning outcomes.
Learning outcomes shall be assessed by formal in-class test methods throughout the duration of the module and by a final formal examination.
We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.
In this section
Grades BBB to include one from GCE A Level Mathematics, Further Mathematics, Physics, Chemistry, Technology and Design, Design and Technology, Double Award Science/Applied Science, Engineering, Electronics or Environmental Technology.
Desirable Subject Offer: BCC
For applicants offering Maths, Further Maths or Physics in GCE A Level, a two grade reduction will be applied at the time of offer.
BTEC Extended Awards
BTEC Level 3 QCF Extended Diploma in a relevant Engineering subject area with overall award profile of DDD. Also requires a Merit in either Mathematics for Engineering Technicians or Further Mathematics for Engineering Technicians, ANDa Merit in Mechanical Principles and applications.
OR
BTEC Level 3 RQF National Extended Diploma in a relevant Engineering subject area with DDM overall award grades to include a Merit in Engineering Principles and Merit in Calculus to Solve Engineering Problems.
The following are acceptable in particular combinations or with A-Level (s) -
NB Subject requirements apply (see above and A-level section).
BTEC Level 3 QCF Subsidiary Diploma, BTEC RQF National Extended Certificate,
BTEC Level 3 QCF 90-credit Diploma, BTEC Level 3 RQF National Foundation Diploma,
BTEC Level 3 QCF Diploma, BTEC Level 3 RQF National Diploma.
Entry equivalences can also be viewed in the online prospectus at http://www.ulster.ac.uk/apply/entrance-requirements/equivalence
Please contact Admissions (contact details below) for further information about acceptable combinations for entry to this course.
120 UCAS tariff points to include a minimum of 4 subjects at Higher Level and 1 subject at Ordinary Level including Mathematics and one other subject from Physics, Chemistry, Physics/Chemistry, Biology, Technology, Engineering or Technology and Design at H2 and English and Maths at O4/H6 or above
Grades BBBCC (to include a minimum of BB in Mathematics and a science subject).
English and Maths required at Standard Grade 1, 2 or 3.
Grades CCC (to include Mathematics and a science subject).
English and Maths required at Standard Grade 1, 2 or 3.
Minimum 26 points (13 at Higher Level to include Grade 5 HL Mathematics and another HL Science subject)
Higher or Subsidiary level in English Language required at Grade 4 or above.
Access Diploma NI
Successful completion of Level 3 Access programme in Science/Technology with an overall 65%
PLUS GCSE English Grade C or Essential Skills Communication Level 2 or Communication Module (Level 2) in Access programme
PLUS 65% in NICATS Mathematics (level 2) or GCSE Mathematics grade C (or equivalent)
NBApplication of Number Level 2 is not acceptable as an alternative to GCSE Grade C Mathematics for entry to this course.
Access to HE Diploma (GB)
24 Distinctions and 21 Merits in Science/Technology
GCSE (or equivalent) minimum of Grade C/4 or above in Mathematics and English Language
NBApplication of Number Level 2 is not acceptable as an alternative to GCSE Grade C Mathematics for entry to this course.
GCSE Mathematics Grade A/7 (or equivalent) if offering GCE A Level Design and Technology, Engineering or Electronics as the specified subject for this course.
GCSE Mathematics Grade C/4 or above (or equivalent) if offering any of the other specified subjects (Maths, Further Maths, Physics, Chemistry, Double Award Science/Applied Science)
GCSE Grade C (or above) in English Language (or equivalent).
Please note that for purposes of entry to this course the Level 2 Essential / Key Skill in Application of Number is NOT regarded as an acceptable alternative to GCSE Maths.
English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.
Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.
OCR/Cambridge Technical Combinations
The University accepts a range of alternative combination of qualifications including OCR Nationals and OCR Cambridge Technicals. While these qualifications do not satisfy the subject requirements for this course, they can be used for grade purposes in combination with BTec/A-level subjects which meet the subject requirements (see above for more information).
HNC in Electrical, Electronic, Manufacturing or Mechanical Engineering subject
Overall Distinction (with distinctions in 90 Level 4 credits) for year 1 entry only
HNDin Electrical, Electronic, Manufacturing or Mechanical Engineering subject
Overall Merit (with distinctions in 60 Level 5 credits)
HND applications may be considered for Year 2 entry where the curriculum sufficiently matches that of the Ulster University full - time Year 1 course.
Foundation Degree
Pass in a relevant subject area with overall 55% and minimum 55% in all taught level 5 modules. Applicants will normally be considered for entry to an associated Honours degree (normally Year 2 entry).
For further information regarding all of the above qualifications please contact Admissions -see contact details below.
Entry equivalences can also be viewed in the online prospectus at http://www.ulster.ac.uk/apply/entrance-requirements/equivalence
Transfer between this course and other similar courses within the Faculty of Computing, Engineering and the Built Environment may be possible on the basis of academic performance.
Exemption from parts of the course may be considered based on appropriate performance in a related, designated course or other approved experiential learning (APEL).
The course has been designed to enable students who graduate with a good honours degree to apply for postgraduate study towards a PhD, MSc, MRes or other higher qualification.
In this section
Job prospects in a wide range of engineering and renewable energy industries are excellent with the majority of graduates finding employment within six months of graduation. Graduates with BEng Hons, first class or upper second class award all satisfy the requirements for a wide range of postgraduate research posts and scholarships.
In Year 3, the student will undertake a period of paid placement in an industrial or academic setting. Placement is compulsory and seen as an integral part providing the student with the opportunity to develop into a junior engineer.
Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partially meeting the academic requirement for registration as a Chartered Engineer.
Applications to full-time undergraduate degrees at Ulster are made through UCAS.
Fees illustrated are based on 21/22 entry and are subject to an annual increase.
Correct at the time of publishing. Terms and conditions apply.
Additional mandatory costs are highlighted where they are known in advance. There are other costs associated with university study.
£4,530.00
£9,250.00
£14,910.00
This course is suitable for a number of student support awards. Please contact the course director for further information.
Faculty Prizes can be viewed at: ulster.ac.uk/academicoffice/prizes.html and follow the links to the Faculty of Computing, Engineering and the Built Environment.
Tuition fees and costs associated with accommodation, travel (including car parking charges), and normal living are a part of university life.
Where a course has additional mandatory expenses we make every effort to highlight them. These may include residential visits, field trips, materials (e.g. art, design, engineering) inoculations, security checks, computer equipment, uniforms, professional memberships etc.
We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. Computer suites and free wifi is also available on each of the campuses.
There will be some additional costs to being a student which cannot be itemised and these will be different for each student. You may choose to purchase your own textbooks and course materials or prefer your own computer and software. Printing and binding may also be required. There are additional fees for graduation ceremonies, examination resits and library fines. Additional costs vary from course to course.
Students choosing a period of paid work placement or study abroad as part of their course should be aware that there may be additional travel and living costs as well as tuition fees.
Please contact the course team for more information.
Central Admissions Magee
Margaret Breslin
T: +44 (0)28 7167 5678
E: admissionsmg@ulster.ac.uk
International Admissions Office
E: internationaladmissions@ulster.ac.uk
Course Director: Dr JP Quinn