With a broad programme of study, graduates have opportunities for employment in a range of engineering disciplines, from Electronic to Mechanical.
Students will complete the next academic year (2020/21) on the Jordanstown campus *
Thereafter, from 2021, they may transition campuses.
Precise timings will be communicated as we progress through the final stages of the build of the enhanced Belfast campus.
*subject to COVID-19 restrictions and on-line learning provision
This course will allow you to develop an understanding of electronic and mechanical engineering from programming and embedded systems to mechanics and CAD. Utilising a connected programme of study, allowing you to build upon your knowledge gained in each semester, this degree will prepare you to become a well-rounded engineer equipped for a wide range of roles within the electronic and mechanical industry.
Sign up to register an interest in the course.
In this section
This course will allow you to develop an understanding of electronic and mechanical engineering from programming and embedded systems to mechanics and CAD. Utilising a connected programme of study, allowing you to build upon your knowledge gained in each semester, this degree will prepare you to become a well-rounded engineer equipped for a wide range of roles within the electronic and mechanical industry.
Mechatronic Engineering graduates have career opportunities within a wide range of sectors, including semiconductors, power, renewable energy, software, hardware design, embedded systems, control, automation, manufacturing, product design and development.
Duration and Mode of Attendance
The duration of the course is in the range of four to seven years, depending on exemption from Level 4 and 5 modules (Years 1 and 2 of equivalent full-time course) and the rate of study. On average students complete study at half the rate of a full-time student, completing 60 credits out of the 120 credits which make up each year of the equivalent full-time course. The maximum study load is 40 credits per semester.
Attendance
Attendance is part-time, day-time and typically requires one full day or two half days per week for 12 teaching weeks each semester. The attendance requirements may vary from semester to semester.
The content for each course is summarised on the relevant course page, along with an overview of the modules that make up the course.
Each course is approved by the University and meets the expectations of:
As part of your course induction, you will be provided with details of the organisation and management of the course, including attendance and assessment requirements - usually in the form of a timetable. For full-time courses, the precise timetable for each semester is not confirmed until close to the start date and may be subject to some change in the early weeks as all courses settle into their planned patterns. For part-time courses which require attendance on particular days and times, an expectation of the days and periods of attendance will be included in the letter of offer. A course handbook is also made available.
Courses comprise modules for which the notional effort involved is indicated by its credit rating. Each credit point represents 10 hours of student effort. Undergraduate courses typically contain 10- or 20-credit modules (more usually 20) and postgraduate course typically 15- or 30-credit modules.
The normal study load expectation for an undergraduate full-time course of study in the standard academic year is 120 credit points. This amounts to around 36-42 hours of expected teaching and learning per week, inclusive of attendance requirements for lectures, seminars, tutorials, practical work, fieldwork or other scheduled classes, private study, and assessment. Part-time study load is the same as full-time pro-rata, with each credit point representing 10 hours of student effort.
Postgraduate Master’s courses typically comprise 180 credits, taken in three semesters when studied full-time. A Postgraduate Certificate (PGCert) comprises 60 credits and can usually be completed on a part-time basis in one year. A 120-credit Postgraduate Diploma (PGDip) can usually be completed on a part-time basis in two years.
Class contact times vary by course and type of module. Typically, for a module predominantly delivered through lectures you can expect at least 3 contact hours per week (lectures/seminars/tutorials). Laboratory classes often require a greater intensity of attendance in blocks. Some modules may combine lecture and laboratory. The precise model will depend on the course you apply for and may be subject to change from year to year for quality or enhancement reasons. Prospective students will be consulted about any significant changes.
Assessment
Assessment methods vary and are defined explicitly in each module. Assessment can be a combination of examination and coursework but may also be only one of these methods. Assessment is designed to assess your achievement of the module’s stated learning outcomes. You can expect to receive timely feedback on all coursework assessment. The precise assessment will depend on the module and may be subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.
Coursework can take many forms, for example: essay, report, seminar paper, test, presentation, dissertation, design, artefacts, portfolio, journal, group work. The precise form and combination of assessment will depend on the course you apply for and the module. Details will be made available in advance through induction, the course handbook, the module specification and the assessment timetable. The details are subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.
Normally, a module will have 4 learning outcomes, and no more than 2 items of assessment. An item of assessment can comprise more than one task. The notional workload and the equivalence across types of assessment is standardised.
Calculation of the Final Award
The class of Honours awarded in Bachelor’s degrees is usually determined by calculation of an aggregate mark based on performance across the modules at Levels 5 and 6, (which correspond to the second and third year of full-time attendance).
Level 6 modules contribute 70% of the aggregate mark and Level 5 contributes 30% to the calculation of the class of the award. Classification of integrated Master’s degrees with Honours include a Level 7 component. The calculation in this case is: 50% Level 7, 30% Level 6, 20% Level 5. At least half the Level 5 modules must be studied at the University for Level 5 to be included in the calculation of the class.
All other qualifications have an overall grade determined by results in modules from the final level of study. In Master’s degrees of more than 200 credit points the final 120 points usually determine the overall grading.
The University employs over 1,000 suitably qualified and experienced academic staff - 59% have PhDs in their subject field and many have professional body recognition.
Courses are taught by staff who are Professors (25%), Readers, Senior Lecturers (18%) or Lecturers (57%).
We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic staff (81%) are accredited fellows of the Higher Education Academy (HEA) - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.
The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise. The precise staffing for a course will depend on the department(s) involved and the availability and management of staff. This is subject to change annually and is confirmed in the timetable issued at the start of the course.
Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.
Figures correct for academic year 2019-2020.
The largest of Ulster's campuses.
Students will complete the next academic year (2020/21) on the Jordanstown campus *
Thereafter, from 2021, they may transition campuses.
Precise timings will be communicated as we progress through the final stages of the build of the enhanced Belfast campus.
*subject to COVID-19 restrictions and on-line learning provision
Jordanstown is our biggest campus in an idyllic setting surrounded by lush lawns and trees. It's just a few hundred metres from Loughshore Park and promenade, and just seven miles from Belfast city centre.
Find out more - information about accommodation
At our Jordanstown Campus we have world class facilities that are open all year round to our students and members of the public.
Find out more - information about sport
At Student Support we provide many services to help students through their time at Ulster University.
Find out more - information about student support
Here is a guide to the subjects studied on this course.
Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.
Year: 1
Status: C
This module provides an understanding of the language and terminology of mathematics, together with the mathematical techniques from algebra, calculus and statistics that are necessary for the description and analysis of engineering systems.
Year: 1
Status: C
This module will provide an introduction to semiconductor devices and their application in electronic circuits such as power supplies, voltage regulators and simple amplifier circuits.
Year: 1
Status: C
This modules makes students aware of the relevant professional, ethical, legal, and sustainability issues associated with being a professional engineer. Induction in how to study at university is included at the start of the module. Assessment is a combination of individual report, class test and team group report.
Year: 2
Status: C
This module provides the fundamental principles mechanical and electrical technologies and provides a methodology for their practical application. The module covers topics such as: Statics and Strength of Materials, Dynamics, Thermodynamics, Linear DC Circuits, Energy Storage and AC Circuits.
Year: 2
Status: C
Students will be introduced to the basic aspects of software development through the use of the Python programming language. An emphasis is placed on developing a broad understanding of the types of programming used in Engineering and beyond, rather than depth in each specific area. Students will learn about objects, modules and code re-usability and self-documentation. They will be encouraged to take a platform independent approach to development and choose their own tools. They should complete the module with a basic knowledge of the development landscape in terms of tools and techniques.
Year: 2
Status: C
This module provides the fundamental principles of Dynamics, Statics and Strength of Materials in relation to mechanical engineering and provides a methodology for their practical application. Its content includes: Basic and derived units, static equilibrium, statically stressed systems, theory of torsion and bending, kinematics of a particle and kinetics of a particle. Those theoretical and practical principles required within each topic area will be developed in lectures and applied in assignments and tutorials.
Year: 3
Status: C
This module is designed to enable students to be able to implement intelligent digital systems based on microcontroller technology.
Year: 3
Status: C
This module provides an understanding of the theoretical concepts and use of feedback-control systems. Theoretical studies are supported by the use of appropriate PC-based analysis and design simulation packages.
Year: 3
Status: C
This module provides a strong basis in important analytical techniques from algebra and calculus and statistics, which are necessary for the description and analysis of engineering systems.
Year: 3
Status: C
This module considers further component and system level analysis and design of analogue and digital electronic circuitry, appropriate to fields such as computing, communications, signal processing and instrumentation.
Year: 4
Status: C
Electrical services: the operation and application of transformers, AC and DC motors including selection, electromagnetic fields, circuits and electronics. Lighting systems. Students will also conduct laboratory experiments and undertake pratical laboratory based projects.
Year: 4
Status: C
This module is designed to introduce engineering students to the basic principles of algorithmic programming, and the solution of engineering problems using MATLAB and Simulink.
Year: 4
Status: C
This module provides an extension of the fundamental principles of Dynamics and Statics and Strength of Materials in relation to mechanical engineering and provides a methodology for their practical application.
Year: 5
Status: C
This module provides an understanding of the concepts and use of mechatronic systems and of the instrumentation, actuator, and feedback-control system components necessary for such systems. Theoretical studies are supported by the use of appropriate PC-based analysis and design packages.
Year: 5
Status: C
This module provides a final year course in Mechatronics. Topics covered include: Examples of mechatronic systems; modelling of mechatronics systems; programmable-logic controllers; design the digital frequency and time measurement systems; analysis and design of feedback and modern control systems.
Status: O
Year: 5
This module is optional
This module gives the student an overview of nanotechnology and its applications in engineering.
Status: O
Year: 5
This module is optional
This module extends the students understanding of the design and creation of software structures using an object-oriented paradigm. The programming language is C++ which is of particular relevance to engineering students.
Status: O
Year: 5
This module is optional
The module commences with a revision of the basic principles of stress and strain, leading to elasticity, tensile testing and plastic behaviour. It then proceeds to address more advanced topics including, micro and macroscopic deformation mechanics and their influence on material performance. It concludes with an introduction to the mechanical forming of materials.
Year: 6
Status: C
Each student taking this module will carry out an individual project on a topic relevant to their degree of study. Students are expected to design the project in collaboration with a nominated supervisor. They will be responsible for carrying out the project and writing up the results in the form of a final dissertation.
Year: 6
Status: C
This module will provide knowledge relating to embedded systems from programming to interfacing and relating IoT based applications. More importantly, the focus will be to increase skills of students to develop a design from a paper to a prototype level.
Year: 6
Status: C
This module provides an insight to key areas of management within organisations; operations management, strategic management and human behaviour within organisations. Teaching methods include lectures, guided discussions and seminars.
Status: O
Year: 6
This module is optional
This module will introduce the building blocks of the digital circuits and approaches to analyse, synthesis, verify and test the digital circuits using EDA tools and relating hardware (e.g. FPGA).
We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.
In this section
You will normally be in full-time employment in an engineering capacity regarded as satisfying the industrial training requirements of the equivalent full-time courses. You should have attained a high level of performance in a Higher National Diploma/Higher National Certificate in an appropriate engineering subject, or a Bachelor of Technology degree, or hold an equivalent qualification.
You will be required to satisfy the Course Committee that you have the support of your employer for release to attend the courses.
The Faculty of Computing and Engineering does not accept students with Essential Skills in Application of Number as the only mathematics qualification.
GCSE profile of Grade C in English Language and Mathematics or above (or equivalent).
English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.
Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.
Exemptions and Transferability
Accelerated entry to the course is given through exemption from level-4 and level-5 modules on an individual basis. Subject to the availability of places, students may transfer at the appropriate time, i.e. at the end of level 4 or level 5, to the equivalent full-time programme.
Undergraduate
Each programme will have slightly different requirements, both in terms of overall points and certain subjects, so please check the relevant subject in the undergraduate on-line prospectus.
Normally Ulster University welcomes applications from students with:
Generally, for undergraduate courses for international applicants we require equivalent to A-Level CCC, for these courses the entry requirements will be one of the following:
Please note that some courses will have subject specific entry requirements, please check the relevant course entry requirements in the undergraduate on-line prospectus. If there is a subject specific requirement you will be required to get 580 in the Subject Specific SAT or Grade 3 in the Subject Specific AP test.
Some courses may also have additional entry criteria, such as a Skype interview, submission of a satisfactory portfolio, criminal record check or health check, please check the relevant course entry requirements in the undergraduate on-line prospectus.
For courses that require GCSE Mathematics Grade C, you will be required to successfully complete Grade 12 in High School Diploma Mathematics.
Some courses have higher entry requirements, please see list below;
(A-level ABB to include 2 science subjects from Biology, Chemistry, Mathematics and Physics or equivalent)
To include one of the following:
(A-Level BBB to include Chemistry and 1 science from Mathematics, Physics or Biology or equivalent)
To include one of the following:
(A-Level BBC or equivalent)
To include one of the following:
In addition to the scholarships and bursaries open to all international students, US students may apply for Federal and Private US loans
English Language
Qualification |
---|
Level 12 English Lang in HSD |
View more information for students from United States of America
In this section
Job prospects in a wide range of engineering industries are excellent with the majority of graduates finding employment within four months of graduation. Graduates with BEng Hons, first class or upper second class award all satisfy the requirements for a wide range of postgraduate research posts and scholarships in, electronic, mechanical, mechatronic, and biomedical engineering.
Mechatronic Engineering graduates have career opportunities within a wide range of sectors, including semiconductors, power, renewable energy, software, hardware design, embedded systems, control, automation, manufacturing, product design and development.
Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.
Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.
Course Director: Dr Robert McMurray
Admissions Contact: Ruth McKeegan
Admissions Service