Develop innovative solutions to energy challenges and gain the expertise to succeed in the thriving renewables industry.
Students will complete the next academic year (2020/21) on the Jordanstown campus *
Thereafter, from 2021, they may transition campuses.
Precise timings will be communicated as we progress through the final stages of the build of the enhanced Belfast campus.
*subject to COVID-19 restrictions and on-line learning provision
Do you want to advance the use of renewable energy technologies? Would you like a career as an energy expert who will play a key role in meeting energy demand from sustainable and environmentally friendly sources?
With an estimated three million new jobs to be created in the energy and renewable energy sectors across Europe by 2020, there has never been a better time to study energy.
The BSc Hons Energy at Ulster University explores renewable energy technologies and the application of science and technology to find innovative solutions to real-world energy problems.
You will study a number of themes throughout the programme and gain an in-depth knowledge of conventional and renewable energy systems including wind, bio-energy, solar, tidal and wave, heat pumps, smart grids, fuel cells and energy storage technologies. As an expert in energy you will be able to design, specify and monitor their performance and ensure their economic and environmental benefits for different scenarios and locations around the world. You will also develop the intellectual skills required to understand new theories, concepts and methods in unfamiliar situations and adapt them to meet future challenges.
Many of our graduates have shaped successful careers in various roles and settings including energy supply and management, energy technology providers and consulting, among others.
Sign up to register an interest in the course.
In this section
The BSc Hons Energy is designed for those who are passionate about environmental causes and wish to discover creative solutions to meet global energy challenges for a sustainable future.
Delivered by the Centre of Sustainable Technologies (CST) and boasting strong industrial links, the course offers an exciting learning experience combining both practical and theoretical elements. Informed by leading research, key themes include energy technologies, sustainability, energy economics and management. Moreover, the international links of CST provide the opportunity to study and research abroad via the Erasmus+ program and European collaboration.
During the course you will develop your knowledge in conventional and renewable energy systems and also learn how to assess relevant policy agendas (e.g. environmental, planning). You will enhance your intellectual skills to explore new theories, concepts and methods in unfamiliar situations and adapt them to meet future challenges.
A plentiful and secure supply of Energy is essential to the UK and other European economies. It is also important that we protect the natural environment by adopting sustainable measures. This has created a large demand for skilled energy professionals who can deliver low-carbon environmentally friendly solutions.
Accredited by the Energy Institute (EI), the course is fully career-focused and you will develop the leadership and management skills necessary for professional working life. You will have also the opportunity to undertake a one-year placement in the industry as part of your degree.
Diploma in Professional Practice DPP
Diploma in Professional Practice International DPPI
Find out more about placement awards
Four years, including placement.
Each student must complete 120 credits in each academic year, with the exception of placement year (60 credits). Years 1, 2 and 4 are spent in the University. Modules are taught on campus and are web-supplemented. In Year 3, students undertake a year's work experience.
10 credit points involve 100 hours of learning effort distributed over lectures (18 hrs), seminars and tutorials (3 hrs), laboratory classes (15 hrs) and independent study (64 hrs).
Teaching will be through lectures, case studies, seminars, practicals and site visits. The lecture sessions will be interactive and include a variety of media resources, being visual and audio. The seminars will provide space for student-led engagement with the supporting literature and other course materials. Students will have access to large-scale laboratories used for international research projects.
This course is currently offered at our Jordanstown Campus but will be moving to the new Belfast City Campus.
The content for each course is summarised on the relevant course page, along with an overview of the modules that make up the course.
Each course is approved by the University and meets the expectations of:
As part of your course induction, you will be provided with details of the organisation and management of the course, including attendance and assessment requirements - usually in the form of a timetable. For full-time courses, the precise timetable for each semester is not confirmed until close to the start date and may be subject to some change in the early weeks as all courses settle into their planned patterns. For part-time courses which require attendance on particular days and times, an expectation of the days and periods of attendance will be included in the letter of offer. A course handbook is also made available.
Courses comprise modules for which the notional effort involved is indicated by its credit rating. Each credit point represents 10 hours of student effort. Undergraduate courses typically contain 10- or 20-credit modules (more usually 20) and postgraduate course typically 15- or 30-credit modules.
The normal study load expectation for an undergraduate full-time course of study in the standard academic year is 120 credit points. This amounts to around 36-42 hours of expected teaching and learning per week, inclusive of attendance requirements for lectures, seminars, tutorials, practical work, fieldwork or other scheduled classes, private study, and assessment. Part-time study load is the same as full-time pro-rata, with each credit point representing 10 hours of student effort.
Postgraduate Master’s courses typically comprise 180 credits, taken in three semesters when studied full-time. A Postgraduate Certificate (PGCert) comprises 60 credits and can usually be completed on a part-time basis in one year. A 120-credit Postgraduate Diploma (PGDip) can usually be completed on a part-time basis in two years.
Class contact times vary by course and type of module. Typically, for a module predominantly delivered through lectures you can expect at least 3 contact hours per week (lectures/seminars/tutorials). Laboratory classes often require a greater intensity of attendance in blocks. Some modules may combine lecture and laboratory. The precise model will depend on the course you apply for and may be subject to change from year to year for quality or enhancement reasons. Prospective students will be consulted about any significant changes.
Assessment
Assessment methods vary and are defined explicitly in each module. Assessment can be a combination of examination and coursework but may also be only one of these methods. Assessment is designed to assess your achievement of the module’s stated learning outcomes. You can expect to receive timely feedback on all coursework assessment. The precise assessment will depend on the module and may be subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.
Coursework can take many forms, for example: essay, report, seminar paper, test, presentation, dissertation, design, artefacts, portfolio, journal, group work. The precise form and combination of assessment will depend on the course you apply for and the module. Details will be made available in advance through induction, the course handbook, the module specification and the assessment timetable. The details are subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.
Normally, a module will have 4 learning outcomes, and no more than 2 items of assessment. An item of assessment can comprise more than one task. The notional workload and the equivalence across types of assessment is standardised.
Calculation of the Final Award
The class of Honours awarded in Bachelor’s degrees is usually determined by calculation of an aggregate mark based on performance across the modules at Levels 5 and 6, (which correspond to the second and third year of full-time attendance).
Level 6 modules contribute 70% of the aggregate mark and Level 5 contributes 30% to the calculation of the class of the award. Classification of integrated Master’s degrees with Honours include a Level 7 component. The calculation in this case is: 50% Level 7, 30% Level 6, 20% Level 5. At least half the Level 5 modules must be studied at the University for Level 5 to be included in the calculation of the class.
All other qualifications have an overall grade determined by results in modules from the final level of study. In Master’s degrees of more than 200 credit points the final 120 points usually determine the overall grading.
The University employs over 1,000 suitably qualified and experienced academic staff - 59% have PhDs in their subject field and many have professional body recognition.
Courses are taught by staff who are Professors (25%), Readers, Senior Lecturers (18%) or Lecturers (57%).
We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic staff (81%) are accredited fellows of the Higher Education Academy (HEA) - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.
The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise. The precise staffing for a course will depend on the department(s) involved and the availability and management of staff. This is subject to change annually and is confirmed in the timetable issued at the start of the course.
Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.
Figures correct for academic year 2019-2020.
A globally recognised hub of creativity, innovation and entrepreneurship.
Students will complete the next academic year (2020/21) on the Jordanstown campus *
Thereafter, from 2021, they may transition campuses.
Precise timings will be communicated as we progress through the final stages of the build of the enhanced Belfast campus.
*subject to COVID-19 restrictions and on-line learning provision
High quality apartment living in Belfast city centre adjacent to the university campus.
Find out more - information about accommodation
At Student Support we provide many services to help students through their time at Ulster University.
Find out more - information about student support
Here is a guide to the subjects studied on this course.
Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.
In this section
Year: 1
Status: C
The module provides a firm grounding in energy conversion through fundamental theory demonstrated in the analysis of conventional and alternative energy conversion systems.
Year: 1
Status: C
This module covers those mathematics topics which graduates in the engineering discipline will require for professional practice. For certain engineering courses this module also provides a platform for the further study of mathematics.
The module starts with refresher topics, includes basic algebra, mathematical functions, polynomial equations, logarithms and exponentials, trigonometry, complex numbers, matrices and determinants, vectors, differentiation and integration, and finishes with subject of sequences and series.
Year: 1
Status: C
This module introduces the student to a range of economic, environmental and social challenges and how these impact upon built environment disciplines. It provides for an appreciation of the policy and actions needed to stimulate behavioural change across a range of issues such as over reliance on fossil fuels, combating social deprivation, mobility and travel behaviour, consumerism and ethical thinking. Students will get the opportunity to reflect on their own attitudes and values to determine how to take more sustainable decisions and how to influence positive change in the wider built environment.
Year: 1
Status: C
This module introduces the student to the requirements of mechanical HVAC and electrical
building services in the internal environment, including design of building heating and
ventilation systems and the fundamentals of electrical design and installation within
buildings.
Year: 1
Status: C
The modern day built environment professional is required to communicate effectively utilising electronic tools with the rest of the project team. This has been mandated by the UK Cabinet Office Construction Strategy, by European Commission procurement regulations and is being followed across the world. This module develops an understanding of the key drivers and barriers to fully implementing Level 2 BIM and points towards the development of level 3 BIM working in the near future. The module develops the foundational skills for internationally recognised BIM Level 2 for the contemporary and future built environment professionals.
Year: 1
Status: C
Engineering is a rapidly evolving field requiring enhanced levels of competency in underpinning sciences. Physics and chemistry play a critical role in a number of engineering areas and energy applications. This module will provide a fundamental knowledge and understanding of the chemical and physical principles relevant to engineers.
Year: 2
Status: C
The module includes subjects covering from sizing electrical wiring and protective devices both in a domestic and industrial context to low voltage transmission and distribution. The module addresses regulations associated with the power lines and electrical services for the buildings.
Year: 2
Status: C
This is a fundamental module for anyone studying energy systems or energy conversion technologies. It introduces the student to the fundamentals of thermodynamics and heat transfer. Students will undertake a series of lectures on heat transfer and thermodynamics, which will be accompanied by laboratories and tutorials. A high level of numeracy is required and the ability to set up, observe and report on experimental apparatus.
Year: 2
Status: C
This module will enable students to identify and understand the current solar thermal and solar photovoltaic technologies and understand how these resources may be managed with a view to future sustainability and demonstrate how the management of energy can benefit industry financially in the short term and influence sustainability in the longer term.
Year: 2
Status: C
This module will introduce students to the diverse sources, technologies and applications of energy from biomass for electricity generation, heat generation and as transport fuel. It will include the practical hands on testing and design of biomass systems. This will be relevant for the future building services engineer to cater for low environmental impact buildings
Year: 2
Status: C
The module covers topics that are suitable for a first year BSc course in Engineering. These include algebra, trigonometry, calculus, statistics and probability.
Year: 2
Status: C
This module will introduce students to wind energy theory and technology, resource assessment and wind farm site development. It will also discuss the implications of both very large-scale development and large numbers of individual turbines on existing Electricity Distribution networks.
Year: 3
Status: C
This module provides undergraduate students with an opportunity to gain structured and professional work experience, in a work-based learning environment, as part of their planned programme of study. This experience allows students to develop, refine and reflect on their key personal and professional skills. The placement should significantly support the development of the student's employability skills, preparation for final year and enhance their employability journey.
Year: 4
Status: C
Project is an essential component of the course. It is the most student-centred element and facilitates the development of self and time management skills as well as furthering technical competence and understanding.
Year: 4
Status: C
This module examines current and future energy markets, market participation, the development of the smart grid and how building design can be used to optimise energy efficiency, storage and generation.
Year: 4
Status: C
This module examines energy storage and demand side response as mechanism for facilitating the integration of non-dispatchable renewable energy in terms of design of systems and economic and social impacts.
Year: 4
Status: C
This module studies methodologies to facilitate and assess behavioural change and consensus building in new and renewable energy projects.
Year: 4
Status: C
Industry is always under pressure to improve its performance with respect to cost, time and quality. The module is a response to these demands, in that it examines current practice and possible areas for change in the management of process and people.
Status: O
Year: 4
This module is optional
A thorough in depth understanding of the engineering processes and total system equipment requirements that utilise Hydrogen as a fuel source develops hydrogen as a clean fuel, a fuel for co-generation in fuel cells as well as energy storage vector.
Status: O
Year: 4
This module is optional
This module examines different typologies of energy generation from water, in terms of design of systems, economic and social impacts.
Status: O
Year: 4
This module is optional
This module will allow students to understand and critically appraise the factors affecting energy consumption in buildings enabling them to explore a wide range of low energy options in both domestic and non-domestic buildings. This will enable them to reduce the auxiliary energy load of any renewable energy solutions that may be considered while appreciating the main hazards to health in modern building designs.
Status: O
Year: 4
This module is optional
This module examines nuclear power and the clean combustion of fossil fuels as an alternative renewable energy in terms of design of systems aand economic and social impacts.
We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.
In this section
The A Level requirement for this course is grades BBB.
If the applicant offers an A Level in Environmental Technologies, Environmental Science, Mathematics or Physics then this will meet the subject requirements, otherwise two must be offered from Design and Technology, Technology and Design, Digital Technology, Applied Science, Biology, Chemistry, Geology, Geography, Economics, Agriculture, Life and Health Sciences (single or double award) or Engineering. Other STEM subjects may be accepted after interview.
For those applicants offering desirable subjects at A level (Mathematics or Physics) a two grade reduction will be applied at the time of offer. The desirable subject must be achieved at a minimum grade B.
Providing the two-subject requirement is met, applicants can satisfy the requirement for one of the A level grades (or equivalent) by substituting a combination of alternative qualifications recognised by the University.
The Faculty of Computing, Engineering and the Built Environment accept a range of alternative combinations of qualifications such as:
BTEC Extended Awards
BTEC Level 3 QCF Extended Diploma in Construction, Building Services, Engineering or Applied Science with overall award profile DDD.
OR
BTEC Level 3 RQF National Extended Diploma in Construction, Building Services, Engineering or Applied Science with DDM overall award grades.
A Levels with;
BTEC Level 3 QCF Subsidiary Diploma;
BTEC RQF National Extended Certificate;
BTEC Level 3 QCF 90-credit Diploma
BTEC Level 3 RQF National Foundation Diploma;
BTEC Level 3 QCF Diploma or BTEC Level 3 RQF National Diploma.
The two-subject requirement must be met.
OCR Nationals and Cambridge Technical Combinations
Do not satisfy the subject entry requirement for this course and will be accepted as grade only when presented with A levels in the relevant subject(s).
For further information please contact the course administrator as listed in the Contact section.
Entry equivalences can also be viewed in the online prospectus at http://www.ulster.ac.uk/apply/entrance-requirements/equivalence.
120 UCAS Tariff Points to include a minimum of 4 subjects at Higher Level and 1 subject at Ordinary Level. Higher Level subjects must include grade H3 Maths, Environmental Technology or Physics or 2 from Economics, Technology, Geography, Physics, Chemistry, Construction and Engineering. The overall profile must also include English at grade H6 or above (HL) or grade O4 or above (Ordinary level). If Mathematics is not being offered at Higher Level, grade O4 or above at Ordinary Level is also required.
The Scottish Highers requirement for this course is BBBCC to include two from: Mathematics, Economics, Technology, Geography, Physics, Chemistry, Biology, Construction or Engineering.
The Scottish Advanced Highers requirement for this course is CCC to include one from Mathematics, Chemistry, Physics, Biology, Engineering, Design Technology or Environmental Technology.
Overall International Baccalaureate profile minimum 26 points (13 at higher level) to include one HL subject from Mathematics, Physics, Chemistry, Biology, Engineering, Design and Technology or Environmental Technology. If Mathematics is not being offered at HL then it is required at Grade 4 in the overall profile. Grade 4 in English Language also required in overall profile.
Science, Technology, Engineering or Combined Science Access with overall average mark of 65%, and 60% in NICATS level 2 Maths module for Year 1 entry.
GCSE Profile to include English Language and Mathematics at grade C or 4 or above (or equivalent).
Please note that for purposes of entry to this course the Level 2 Certificate in Essential Skills - Application of Number is NOT regarded as an acceptable alternative to GCSE Maths.
English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.
Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.
HND/HNC
HNC in a Construction/Civil Engineering or Building Engineering subject will be considered for year 1 entry only, the requirement is overall Distinction. GCSE Maths Grade C or 4 or an alternative Mathematics qualification acceptable to the University is also required.
HND in Construction, Civil Engineering or Building Engineering subject the requirement is overall Merit to include a Merit in either the Level 4 or Level 5 Analytical Methods module. GCSE Maths Grade C or 4 or an alternative Mathematics qualification acceptable to the University is also required. Applicants may be considered for year 2 entry where the curriculum sufficiently matches that of Ulster University full time year 1 course.
Ulster Foundation Degree - Building Services & Renewable Energies
Pass in Foundation Degree with an overall mark of 55%, and minimum 55% in all taught level 5 modules. GCSE Maths Grade C or 4 or an alternative Mathematics qualification acceptable to the University is also required. Applicants will normally be considered for year 2 entry to the linked Honours degree.
For further information on the requirements for this course please contact
the administrator as listed in the Contact details section below.
Entry equivalences can also be viewed in the online prospectus at http://www.ulster.ac.uk/apply/entrance-requirements/equivalence
The General Entry Requirements must also be met including English Language minimum GCSE grade C or 4 (or equivalent). Please check the following link http://www.ulster.ac.uk/apply/entrance-requirements#ger
Transfer between this course and other similar courses within the Faculty of Art, Design and the Built Environment may be possible on the basis of academic performance and availability of places.
Exemption from parts of the course may be considered based on appropriate performance in a related, designated course.
In this section
Graduates from this course are now working for:
With this degree you could become:
There is a large demand for professionals who can help address current and future challenges of affordable, sustainable and secure energy supply across all economic sectors. Embarking upon a career in Energy can open a wide variety of choices in both public and private sectors. As an Energy professional you will be engaging in energy assessments of systems and processes, carrying out the design, sizing and evaluation of alternative/renewable energy systems, depending on their economic, environmental and social acceptability. Career progression will take you into strategic decision-making, budgetary control and wider consultancy responses. Opportunities also exist to continue your studies through MSc and PhD programmes in Renewable Energy, Infrastructure and sustainability issues currently running by the Centre for Sustainable Technologies.
You will be employed in the following areas:
One year work placement is an integral component of the study. Work placement integrates education with the professional life and the wider community, providing a whole range of experiences and skills. You will have the opportunity to go on a work placement during the 3rd year of the BSc (Hons) Energy course.
You can carry out your placement locally or abroad. There is a large range of local (NI and UK) employers seeking placement students with skills in Energy. Erasmus+ grants are available for students that wish to carry out their work placement in the Republic of Ireland or other EU countries. Following the successful completion of a programme of assessments you will be eligible for the award of a Diploma in Professional Practice (DPP).
Building on the international research links of the course team, you will have the opportunity to study part of your course abroad via Erasmus+ collaborations set up with European Universities, which include the University of Lleida (Spain), the University of Naples (Italy) and University of Patras (Greece).
Accredited by the Energy Institute (EI) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partially meeting the academic requirement for registration as a Chartered Engineer.
Applications to full-time undergraduate degrees at Ulster are made through UCAS.
Fees illustrated are based on 21/22 entry and are subject to an annual increase.
Correct at the time of publishing. Terms and conditions apply.
Additional mandatory costs are highlighted where they are known in advance. There are other costs associated with university study.
£4,530.00
£9,250.00
£14,910.00
https://www.ulster.ac.uk/academicoffice/prizes
Follow the links to the Faculty of Computing, Engineering and the Built Environment.
Tuition fees and costs associated with accommodation, travel (including car parking charges), and normal living are a part of university life.
Where a course has additional mandatory expenses we make every effort to highlight them. These may include residential visits, field trips, materials (e.g. art, design, engineering) inoculations, security checks, computer equipment, uniforms, professional memberships etc.
We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. Computer suites and free wifi is also available on each of the campuses.
There will be some additional costs to being a student which cannot be itemised and these will be different for each student. You may choose to purchase your own textbooks and course materials or prefer your own computer and software. Printing and binding may also be required. There are additional fees for graduation ceremonies, examination resits and library fines. Additional costs vary from course to course.
Students choosing a period of paid work placement or study abroad as part of their course should be aware that there may be additional travel and living costs as well as tuition fees.
Please contact the course team for more information.
Admissions for entry requirements:
Dorothy McCrory
T: +44 (0)28 9036 6231
E: de.mccrory@ulster.ac.uk
Centralised Admissions staff:
T: +44 (0)28 9036 6309
E: admissionsjn@ulster.ac.uk
For course specific enquiries:
Dr Aggelos Zacharopoulos, Course Director
T: +44 (0)28 9036 8227
E: a.zacharopoulos@ulster.ac.uk