Find a course

Graduates from this course have gained employment with a wide range of organisations

  • AES
  • Andor Technology Ltd
  • Citi
  • Kainos

Graduates from this course are employed in many different roles

  • Business Analyst
  • Data Administrator
  • Security Analyst
  • Software Developer
  • Technical Support
  • Web Developer

Overview

Important notice – campus change This course will move to the Belfast campus.  Students will change campus part way through this course. Find out more

Computing@Ulster - striving to achieve excellence in learning, teaching, research and technology transfer; empowering the Graduates of tomorrow.

Summary

The course addresses the underlying principles of modern computing technology, its role in helping to solve real-world business problems and the critical issues in its effective management. A graduate would be equipped with skills for the development, maintenance, evaluation and management of computing systems in a range of organisations, typically in the context of IT departments in public or private sector organisations.

It will equip you with the ability to analyse applications and to specify and develop solutions to organisational and technical problems requiring computing technologist support. The BSc Hons Computing Technologies provides for the systematic study of computing technologies and their role in organisations.

Sign up for course updates

Sign up to receive regular updates, news and information on courses, events and developments at Ulster University.

We’ll not share your information and you can unsubscribe at any time.

About this course

In this section

About

This course is offered at the Jordanstown campus by the Faculty of Computing, Engineering and the Built Environment. If you want to be able to solve real-world business problems and become a professional with expertise in the development, maintenance, and management of computing systems, then you should consider this course.

You undertake six modules in Year 1 covering subjects such as programming (Python and C#), databases, computer technologies, interactive web authoring and systems software. In Year 2, further core modules extend your skills in technology management and web development and introduce topics relevant to professional development, software development, networks and security.

In Year 3 you undertake a year's work experience, in the UK, Ireland, Europe or USA. An alternative to this is to spend a year studying abroad, either in USA or Europe.

You return to the University in Year 4 for a final year of academic study which consists of 3 compulsory modules that reflect the core theme of the course at an advanced level and 1 option module selected from a range of options in areas such as artificial intelligence, data analytics, pervasive computing, networks, mobile development, big data and software engineering. You also undertake a major project which involves the analysis, design, implementation, testing and evaluation of the solution to a substantial software-related problem.

Why study Computing Technologies?
Computing technologies pervades every aspect of our day to day lives from the gadgets in our homes, our workplaces, to our mobile phones. Industry needs dynamic, enthusiastic graduates with interests across the broader computing technologies spectrum.

What types of jobs are available?
Given the variety of applications of computing technology, there are jobs available in numerous fields, for example, database administration, technical support, software development and IT project management.

Do I need to have studied Computing or ICT at school or college?
A discipline with such diversity requires students with a variety of interests and backgrounds, therefore, you do not need to have studied Computing or ICT however, we will look for evidence of a passion and enthusiasm for this dynamic, fast-moving discipline.

Associate awards

Diploma in Professional Practice DPP

Diploma in International Academic Studies DIAS

Diploma in Professional Practice International DPPI

Find out more about placement awards

Attendance

Four years including placement.

New students are expected to attend a pre-semester induction. Years 1, 2 and 4 of the course are delivered over two taught semesters (September to May) with a supplementary assessment period over the summer. Year 3 students are expected to undertake a placement working for a company, typically over a calendar year.

Start dates

  • September 2020
How to apply

Teaching and learning assessment

Content

The content for each course is summarised on the relevant course page, along with an overview of the modules that make up the course.

Each course is approved by the University and meets the expectations of:

- the relevant generic national Qualification Descriptor

- the applicable Subject Benchmark Statement

- the requirements of any professional, regulatory, statutory and accrediting bodies.

Attendance and Independent Study

As part of your course induction, you will be provided with details of the organisation and management of the course, including attendance and assessment requirements - usually in the form of a timetable. For full-time courses, the precise timetable for each semester is not confirmed until close to the start date and may be subject to some change in the early weeks as all courses settle into their planned patterns. For part-time courses which require attendance on particular days and times, an expectation of the days and periods of attendance will be included in the letter of offer. A course handbook is also made available.

Courses comprise modules for which the notional effort involved is indicated by its credit rating. Each credit point represents 10 hours of student effort. Undergraduate courses typically contain 10- or 20-credit modules (more usually 20) and postgraduate course typically 15- or 30-credit modules.

The normal study load expectation for an undergraduate full-time course of study in the standard academic year is 120 credit points. This amounts to around 36-42 hours of expected teaching and learning per week, inclusive of attendance requirements for lectures, seminars, tutorials, practical work, fieldwork or other scheduled classes, private study, and assessment. Part-time study load is the same as full-time pro-rata, with each credit point representing 10 hours of student effort.

Postgraduate Master’s courses typically comprise 180 credits, taken in three semesters when studied full-time. A Postgraduate Certificate (PGCert) comprises 60 credits and can usually be completed on a part-time basis in one year. A 120-credit Postgraduate Diploma (PGDip) can usually be completed on a part-time basis in two years.

Class contact times vary by course and type of module. Typically, for a module predominantly delivered through lectures you can expect at least 3 contact hours per week (lectures/seminars/tutorials). Laboratory classes often require a greater intensity of attendance in blocks. Some modules may combine lecture and laboratory. The precise model will depend on the course you apply for and may be subject to change from year to year for quality or enhancement reasons. Prospective students will be consulted about any significant changes.

Assessment

Assessment methods vary and are defined explicitly in each module. Assessment can be a combination of examination and coursework but may also be only one of these methods. Assessment is designed to assess your achievement of the module’s stated learning outcomes. You can expect to receive timely feedback on all coursework assessment. The precise assessment will depend on the module and may be subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.

Coursework can take many forms, for example: essay, report, seminar paper, test, presentation, dissertation, design, artefacts, portfolio, journal, group work. The precise form and combination of assessment will depend on the course you apply for and the module. Details will be made available in advance through induction, the course handbook, the module specification and the assessment timetable. The details are subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.

Normally, a module will have 4 learning outcomes, and no more than 2 items of assessment. An item of assessment can comprise more than one task. The notional workload and the equivalence across types of assessment is standardised.

Calculation of the Final Award

The class of Honours awarded in Bachelor’s degrees is usually determined by calculation of an aggregate mark based on performance across the modules at Levels 5 and 6, (which correspond to the second and third year of full-time attendance).

Level 6 modules contribute 70% of the aggregate mark and Level 5 contributes 30% to the calculation of the class of the award. Classification of integrated Master’s degrees with Honours include a Level 7 component. The calculation in this case is: 50% Level 7, 30% Level 6, 20% Level 5. At least half the Level 5 modules must be studied at the University for Level 5 to be included in the calculation of the class.

All other qualifications have an overall grade determined by results in modules from the final level of study. In Master’s degrees of more than 200 credit points the final 120 points usually determine the overall grading.

Modules

Here is a guide to the subjects studied on this course.

Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.

In this section

Year one

Programming I

Year: 1

Computer programming is a fundamental skill expected of computing graduates. This module will introduce students to the foundational concepts of programming that will be used as building blocks in future modules. Students will also develop and enhance their problem solving skills as an integral part of the module.

Database Systems

Year: 1

Database management is a fundamental skill expected of Computing graduates. This module will introduce students to the fundamental concepts of database design, implementation, querying and management of relational database systems.

Interactive Web Authoring

Year: 1

This module will introduce the design principles, structural elements and technical concepts that underpin web authoring. Understanding of these concepts will be reinforced by action research into exemplar websites. Application of the technical concepts will be facilitated through the use of web authoring tools in practical sessions to enhance the technical skills for the creation and styling of interactive Websites.

Systems Software

Year: 1

The principal aim of this unit is to provide an understanding of the underlying systems that support the applications software. The theoretical concepts covered are illustrated by considering their practical application in modern real-world solutions.

Programming II (C#)

Year: 1

Computer programming is a fundamental skill expected of computing graduates. This module will introduce students to the object oriented concepts of programming that will be used as building blocks in future modules. Students will also develop and enhance their problem solving skills as an integral part of the module.

Computer Technology

Year: 1

This module will introduce students to the basic hardware components from which a computer system is constructed and the organisation of these components. The components of the computer system that are involved in the execution of a software program will be investigated, as will the main features of typical operating systems. The students will also gain an appreciation of the evolution of computer systems and will be introduced to problem solving using a digital logic and computer arithmetic.

Year two

Computer Networks

Year: 2

The principal aim of this unit is to provide an understanding of the underlying systems which
support networks. The theoretical concepts covered are illustrated by considering their practical application in modern real-world solutions.

Professional Development

Year: 2

This module is intended to support students in developing the broad professional awareness necessary for seeking and obtaining employment.

Systems Security

Year: 2

The principal aim of this module is to provide an understanding of computing systems security concerns and how they can be addressed and mitigated so that security considerations are taken into account, and embedded in organisations and IT projects planning and management.

Visual Web Development

Year: 2

This module will introduce students to the principles and techniques necessary for developing information systems to be deployed over the World Wide Web. Students will also be introduced to important design considerations for web applications.

e-Business

Year: 2

Many organisations have adopted e-business in response to customer expectations, to remain competitive in their business market, and to achieve efficiencies over current business practices. E-Business is a major application area of ICT. This module gives students an introduction to the types and scope of e-commerce, e-business and the role of the underlying technologies necessary for its effective implementation in a commercial context.

Technology Infrastructure Management

Year: 2

Computer technologies play a role in the operations of virtually every modern organization. Typically working as part of a team, Computing Technology graduates may be required to undertake roles in technical support and systems management. This module will introduce the fundamental principles of technology operations and support at both the theoretical and practical level.

Software Development Practice

Year: 2

The fundamental aim of this module is to provide students with knowledge and practical skills in relation to the software development process using a contemporary framework such as Agile. The module offers theoretical grounding but will mainly focus on the practical application of Agile in a team setting to provide a systems solution to a given problem.

Year three

Professional Practice - Computing

Year: 3

This module provides undergraduate students with an opportunity to gain structured and professional work experience, in a work-based learning environment, as part of their planned programme of study. This experience allows students to develop, refine and reflect on their key personal and professional skills. The placement should significantly support the development of the student's employability skills, preparation for final year and enhance their employability journey.

International Academic Studies

Year: 3

This module is optional

This module provides an opportunity to undertake an extended period of study outside the UK and Republic of Ireland. Students will develop an enhanced understanding of the academic discipline whilst generating educational and cultural networks.

Year four

Process Management

Year: 4

This module will provide an understanding of the process perspective of problem solving for modern software engineers. The module provides the knowledge and skills necessary to embark on organisational change and improvement using well-formed theories of organisational, engineering and support processes. It will provide the knowledge and skills necessary to evolve engineering capability at an organisational and personal level.

Full-Stack Strategies and Development

Year: 4

Full-stack skills are important for the students to understand how people in a team works together to develop high-quality software. This module will introduce students to the key concepts of full-stack development and the tools used to implement the full-stack strategies. The students will be able to use what they learn from this module to work in a team in order to develop a robust software or APIs according to industry processes.

Strategic Information Systems Management

Year: 4

Organisations in the 21st century have become increasingly information and knowledge based relying heavily on the use of Information Systems (IS) and Information Technology (IT). To add value, compete and remain competitive, in an increasingly global market, it is necessary to have a clear understanding of the role of ISIT in support of meeting business needs. This module seeks to extend the student's knowledge of IS and organisational management by introducing concepts and techniques to support the management and manipulation of information and knowledge resources for competitive advantage. Understanding how legacy, current and future systems may be harnessed from a managerial rather than technical perspective within a business and organisational context is required.

Project

Year: 4

Students are required to undertake a major project during the final year of the course. The project module allows a selected topic area to be investigated in depth and for a solution to be developed in response. Within the project, the student is expected to integrate and apply material from other modules in the course.

Big Data and Distributed Computing

Year: 4

This module is optional

Within this module a variety of database and data storage paradigms will be explored, ranging from more traditional relational systems to NoSql and object stores, time series databases and graph stores.

Consideration will be given to big data and the problem with storing and querying high volumes of highly variable data which is stored and processed at a high speed. The cloud computing paradigm will also be introduced and how to avail of its power and resources.

The core concepts of distributed computing will be examined in the context of Hadoop. Students will be taught, practically and theoretically, about the components of Hadoop, workflows, MapReduce, Spark, Pig and Hive.

Concurrent and Distributed Systems

Year: 4

This module is optional

A concurrent system in which a collection of programs can execute in an interleaved fashion has many features in common with a distributed system in which processes on independent computers co-operate across a network or internet. This module presents the fundamental concepts of both concurrent systems and distributed systems and introduces the various techniques that can be used to program them. It provides students with the foundations for using the technology in computer applications.

Software Reliability Engineering

Year: 4

This module is optional

The content of the module provides an overview of principles, steps, methods and tools in building more reliable software systems, and an in-depth treatment of formal requirements specification and formal verification phases, the role such phases play in reliable software development and techniques. The module considers a range of reliable software development models, formal requirement specification and verification techniques. Practical work will require students to apply these techniques in a range of problems domains.

Data Analytics

Year: 4

This module is optional

In the era of cloud computing and big data, this module will provide students with the theory and practical foundations for undertaking real world data analytics.

Software Engineering Management

Year: 4

This module is optional

The careful planning and control of project activities is essential to the delivery of successful software systems. The unique nature of software engineering projects requires a blend of generic project management skills and software specific project management and quality assurance capabilities. This module seeks to extend the student's knowledge of software engineering by introducing techniques and methods for the management of industrial software engineering projects.

Enterprise Networks

Year: 4

This module is optional

The module provides the student with a deep understanding of the underlying communication protocols of personal, local area networks, wide area networks and inter-networks. The emphasis is on network planning, design and management. Issues such as acceptable network performance, detection of faults, maintaining security and effective management are studied as these are key to the successful operation of businesses. The module will address state of the art protocols and network case studies and can provide (i) an up to date viewpoint of Enterprise Networks for business and (ii) an opportunity for fostering research ideas in this discipline.

Pervasive Computing

Year: 4

This module is optional

The module will provide the opportunity to gain an understanding of pervasive computing and to apply this understanding to a range of application domains through working with wireless sensor networks.

Artificial Intelligence

Year: 4

This module is optional

This module presents students with the opportunity to learn how to develop AI models and methods for the important processes, resources and structures that together make up intelligent agents. It is also an opportunity to learn how to build an AI focused application.

Computer Vision

Year: 4

This module is optional

Computer Vision is an increasingly pervasive element of technology-based solutions in a range of applications, both standalone and distributed over the Internet, requiring an understanding of image and video processing fundamentals and how they are integrated with Machine Learning. This module seeks to develop the student's knowledge of Computer Vision by introducing techniques and tools that enable machines with a capacity to sense the world using visual data. The module also provides opportunities for the student to learn how to develop applications to solve Computer Vision tasks.

Mobile Development

Year: 4

This module is optional

This module addresses and develops understanding and knowledge of key concepts associated with mobile technology platforms, and fosters related mobile application software design and development principles.

Entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

In this section

A level

The A Level requirement for this course is grades ABB. All subject areas considered.

Desirable Subject Offer

For those applicants offering desirable subjects at A level (Mathematics/Physics/Chemistry/Software Systems Development/Computing (not IT/ICT)) one grade reduction will be applied at the time of offer. The desirable subject must be achieved at a minimum grade B.

Applicants offering qualifications as an alternative to A-levels will receive the equivalent reduction when those qualifications include a significant proportion of mathematics, software development and/or physical science.

Applied General Qualifications

The Faculty of Computing, Engineering and the Built Envionment accept a range of alternative combination of qualifications such as:

BTEC Extended Awards
The requirement for this course is BTEC Level 3 QCF Extended Diploma with overall award profile of DDM to include a minimum of 10 unit distinctions.

OR

The requirement for this course is BTEC Level 3 RQF National Extended Diploma with DDM overall award grades. All subject areas considered.

A Levels with:
BTEC Level 3 QCF Subsidiary Diploma or BTEC Level 3 RQF National Extended Certificate;
BTEC Level 3 QCF 90-credit Diploma or BTEC Level 3 RQF National Foundation Diploma;
BTEC Level 3 QCF Diploma or BTEC Level 3 RQF National Diploma.

OCR/Cambridge Technical Combinations
A levels with OCR Nationals and OCR Cambridge Technicals.

For further information on the requirements for this course please contact
the administrator as listed in the Contact details section below.

Entry equivalences can also be viewed in the online prospectus at http://www.ulster.ac.uk/apply/entrance-requirements/equivalence

Irish Leaving Certificate

Overall Irish Leaving Certificate (higher level) grades H2,H3,H3,H3,H3. English Grade H6 or above (HL) and Maths Grade H5 or above (HL) or English Grade O4 or above (OL) and Maths O3 or above (OL) if not sitting at higher level is also required. All subject areas considered.

Scottish Highers

The Scottish Highers requirement for this course is BBBBC. All subject areas considered.

Scottish Advanced Highers

The Scottish Advanced Highers requirement for this course is BBC. All subject areas considered.

International Baccalaureate

Overall International Baccalaureate Diploma requirement for this course is a minimum of 27 points to include 13 at Higher Level to include grade 5 in HL Mathematics. Grade 4 in English Language also required in overall profile.

Access to Higher Education (HE)

Successful completion of a Ulster University validated Access route with an overall mark of 70% to include 70% in NICATS Maths (level 2) or GCSE Mathematics grade B, C* or 5 (or an alternative qualification acceptable to the University) for entry to year 1.

Other Access courses considered individually, please contact the administrator as listed in the Contact details section below.

http://www.ulster.ac.uk/apply/entrance-requirements/equivalence

GCSE

GCSE (or equivalent) profile to include minimum of Grade B, C* or 5 or above in Mathematics and Grade C or 4 in English Language.

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Additional Entry Requirements

HND/HNC
HNC requirement is overall Distinction in a relevant subject area for year 1 entry only.

HND requirement is overall Distinction in a relevant subject area. HND applications may be considered for year 2 entry where the curriculum sufficiently matches that of Ulster University full-time year 1 course.

Ulster Foundation Degree
Pass in Foundation Degree with an overall mark of 60% in level 5 modules and minimum 55% in all taught level 5 modules. Applicants who present a Grade C or 4 in GCSE Mathematics must also achieve 50% in the Foundation Degree Mathematics module. Applicants will normally be considered for year 2 entry to the linked Honours degree.

For further information on the requirements for this course please contact
the administrator as listed in the Contact details section below.

Entry equivalences can also be viewed in the online prospectus at http://www.ulster.ac.uk/apply/entrance-requirements/equivalence

The General Entry Requirements must also be met including English Language minimum GCSE grade C or 4 (or equivalent).

Please check the following link http://www.ulster.ac.uk/apply/entrance-requirements#ger

Exemptions and transferability

Students who have successfully completed Year 1 of a similar honours degree course may be permitted to enter into Year 2. Suitably qualified candidates from a Foundation Degree in Computing Technologies also may be permitted to enter into Year 2.

Careers & opportunities

In this section

Graduate employers

Graduates from this course have gained employment with a wide range of organisations. Here are some examples:

  • AES
  • Andor Technology Ltd
  • Citi
  • Kainos

Job roles

Graduates from this course are employed in many different roles. Here are some examples:

  • Business Analyst
  • Data Administrator
  • Security Analyst
  • Software Developer
  • Technical Support
  • Web Developer

Career options

Graduates with advanced computing technology skills have many career opportunities available to them including database administration, technical support, software development and IT project management. Average salaries are often higher than those of other graduates. There are also opportunities for postgraduate study in computing technologies, computing or a related area.

Work placement / study abroad

In Year 3 you undertake a year's work experience, in the UK, Ireland or Europe. You can also study in the USA. This leads to either the Diploma in Professional Practice for a placement year based in UK or Ireland; Diploma in Professional Practice (International) for a placement year based outside the UK or Ireland; or the Diploma in International Academic Studies if Year 3 is spent in study abroad.

Professional recognition

BCS, the Chartered Institute for IT

Accredited by BCS, the Chartered Institute for IT for the purposes of fully meeting the academic requirement for registration as a Chartered IT Professional.

BCS, the Chartered Institute for IT

Accredited by BCS, the Chartered Institute for IT on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for Incorporated Engineer and partially meeting the academic requirement for a Chartered Engineer.

Academic profile

The University employs over 1,000 suitably qualified and experienced academic staff - 59% have PhDs in their subject field and many have professional body recognition.

Courses are taught by staff who are Professors (25%), Readers, Senior Lecturers (18%) or Lecturers (57%).

We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic staff (81%) are accredited fellows of the Higher Education Academy (HEA) - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.

The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise. The precise staffing for a course will depend on the department(s) involved and the availability and management of staff. This is subject to change annually and is confirmed in the timetable issued at the start of the course.

Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.

Figures correct for academic year 2019-2020.

Apply

How to apply Request a prospectus

Applications to full-time undergraduate degrees at Ulster are made through UCAS.

Start dates

  • September 2020

Fees and funding

In this section

Fees (per year)

Important notice - fees information Fees illustrated are based on 19/20 entry and are subject to an annual increase. Correct at the time of publishing. Terms and conditions apply. Additional mandatory costs are highlighted where they are known in advance. There are other costs associated with university study.
Visit our Fees pages for full details of fees

Northern Ireland & EU:
£4,275.00

England, Scotland, Wales
and the Islands:

£9,250.00  Discounts available

International:
£14,060.00  Scholarships available

Scholarships, awards and prizes

A variety of scholarships, awards and prizes are available each year to reflect individual academic excellence in specific areas of study or across year groups.

Additional mandatory costs

Tuition fees and costs associated with accommodation, travel (including car parking charges), and normal living are a part of university life.

Where a course has additional mandatory expenses we make every effort to highlight them. These may include residential visits, field trips, materials (e.g. art, design, engineering) inoculations, security checks, computer equipment, uniforms, professional memberships etc.

We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. Computer suites and free wifi is also available on each of the campuses.

There will be some additional costs to being a student which cannot be itemised and these will be different for each student. You may choose to purchase your own textbooks and course materials or prefer your own computer and software. Printing and binding may also be required. There are additional fees for graduation ceremonies, examination resits and library fines. Additional costs vary from course to course.

Students choosing a period of paid work placement or study abroad as part of their course should be aware that there may be additional travel and living costs as well as tuition fees.

Please contact the course team for more information.

Contact

Admissions contact regarding entry requirements:
Julie McKee
T: +44 (0)28 9036 8421
E: ji.mckee@ulster.ac.uk

Centralised Admissions staff:
T: +44 (0)28 9036 6305
E: admissionsjn@ulster.ac.uk

For course specific enquiries:
Dr Jose Santos
T: +44 (0)28 9036 6585
E: ja.santos@ulster.ac.uk

For more information visit

Faculty of Computing, Engineering and the Built Environment

School of Computing

Disclaimer

  1. The University endeavours to deliver courses and programmes of study in accordance with the description set out in this prospectus. The University’s prospectus is produced at the earliest possible date in order to provide maximum assistance to individuals considering applying for a course of study offered by the University. The University makes every effort to ensure that the information contained in the prospectus is accurate but it is possible that some changes will occur between the date of printing and the start of the academic year to which it relates. Please note that the University’s website is the most up-to-date source of information regarding courses and facilities and we strongly recommend that you always visit the website before making any commitments.
  2. Although reasonable steps are taken to provide the programmes and services described, the University cannot guarantee the provision of any course or facility and the University may make variations to the contents or methods of delivery of courses, discontinue, merge or combine courses and introduce new courses if such action is reasonably considered to be necessary by the University. Such circumstances include (but are not limited to) industrial action, lack of demand, departure of key staff, changes in legislation or government policy including changes, if any, resulting from the UK departing the European Union, withdrawal or reduction of funding or other circumstances beyond the University’s reasonable control.
  3. If the University discontinues any courses, it will use its best endeavours to provide a suitable alternative course. In addition, courses may change during the course of study and in such circumstances the University will normally undertake a consultation process prior to any such changes being introduced and seek to ensure that no student is unreasonably prejudiced as a consequence of any such change.
  4. The University does not accept responsibility (other than through the negligence of the University, its staff or agents), for the consequences of any modification or cancellation of any course, or part of a course, offered by the University but will take into consideration the effects on individual students and seek to minimise the impact of such effects where reasonably practicable.
  5. The University cannot accept any liability for disruption to its provision of educational or other services caused by circumstances beyond its control, but the University will take all reasonable steps to minimise the resultant disruption to such services.