Skip to navigation Skip to content

Course search

Safety Engineering and Disaster Management
BEng (Hons)

2019/20 Part-time Undergraduate course

Award:

Bachelor of Engineering with Honours

Faculty:

Faculty of Computing, Engineering and the Built Environment

School:

Belfast School of Architecture and the Built Environment

Campus:

Jordanstown campus

Start date:

September 2019

With this degree you could become:


  • Emergency Response Team Leader
  • Humanitarian Relief Coordinator
  • Nuclear Safety Engineer
  • Principal Design Engineer
  • Process Safety Engineer

Graduates from this course are now working for:


  • Aerospace Industry
  • Energy Industries
  • Global Management Consultancies
  • International Aid Agencies
  • Pharmaceutical Industry
  • United Nations

Overview

If you want to save lives and make a meaningful difference in the world then this is the course for you.

Important notice – campus change Students will complete the next two years on the Jordanstown campus (academic year 2019/20 and 2020/21). Thereafter, from 2021, they may transition campuses. Precise timings will be communicated as we progress through the final stages of the build of the enhanced Belfast campus. Find out more 

Summary

This course prepares you for a leadership role in the design of highly creative technological solutions for the delivery of complex engineering projects and humanitarian relief responses.

The two key focal points of the course, safety engineering and disaster management, intertwine perfectly to educate and prepare you for roles within industry. The safety engineering strand will concentrate upon intelligent design of systems and processes to create more efficient organisations and industries with a highly attuned emphasis on environmental sustainability and inherently safe design for all concerned. The complementary disaster management focus then explores the macro issues to prepare you to lead and manage disaster response teams in a truly international context.

This course prepares you to be in a position to respond to man-made and natural disasters. You will come to develop your technical, scientific and creative skills to help people and communities most in need and most specifically in the face of adversity, such as post-disaster or extreme emergencies. Through this course you will develop a full understanding of your ethical role in terms of designing critical solutions to highly sophisticated problems with the primary aim of preserving or improving human life.

If you register on the BEng (Hons) programme initially you may transfer to the MEng (Hons) Safety Engineering and Disaster Management providing you achieve an average of 60% or more in your fourth year of study.


Sign up for course updates

Sign up to register an interest in the course.

About this course

About

This innovative degree combines the professional engineering discipline of Safety Engineering with Emergency Planning and Disaster Management. Increasing concerns over climate change and energy security, the resultant new technologies, and the growing threat of natural and manmade disasters mean that today’s engineers face a new set of challenges. This degree will equip you with specialist skills to design structures and systems to withstand potential disasters in the natural and the built environment. The nature of disasters may include those caused by extreme weather such as flooding, forest fires or earthquakes, or industrial incidents including chemical, biological, radiological and nuclear accidents, or acts of terrorism.

Combining the discipline of safety engineering with disaster management equips graduates with engineering skills that can be used where human benefit is the primary concern. Engineers have the skills to help people and communities most in need and in the face of adversity, such as post disaster or in extreme emergencies. As a student on this course you will learn to recognise the hazards and modes of failure of a system or structure, and will learn how to plan for emergency and provide solutions in the event of a disaster.

This course transcends industrial sectors and as such you will be employable across a wide range of industries as varied as nuclear and renewable energies, oil and gas, pharmaceutical, manufacturing, international aid agencies, engineering consultancies, governmental emergency response roles, and disaster and crisis management arenas. Job opportunities are vast on the global stage as the nature of the role applies to most business sectors.

The course will appeal to students with an eye for innovation, a creative mind and a passion for compassion who have an educational background mix of science, technology, mathematics and geography and ultimately a desire to make a meaningful difference in the world.

Attendance

The course commences in September 2018 and will initially be based on the Jordanstown campus, however from September 2019 the main geographical base for the course will be on the new Belfast campus.

Attendance is part time and typically one full day per week.

Semesters are divided into 18 week blocks, which includes 12 weeks of teaching with an exam period towards the end of each semester. You will have to attend two semesters, the first starting mid-September, running until the near the end of January. The second semester commences at the end of January and ends in May.

Each semester of each year is different in terms of attendance at timetabled classes and you will also be expected to undertake independent study outside of the classroom/ laboratory environment, which will involve in depth reading into the subject area, research and discussion with colleagues, coursework preparation and general study.

Start dates

  • September 2019

Teaching, Learning and Assessment

The course has been designed to provide you with a creative, innovative challenging and rewarding learning experience.

Once you have commenced this course you can expect to experience a vast mix of exciting and engaging creative learning experiences. The design of the course is very much focussed on ensuring that you have the most positive of student experiences that ultimately will be preparing you for life as a graduate working in a high paced, critical and engaging working environment.

To reflect this the learning and teaching on this course occurs through creative and innovative approaches that includes simulation workshops, real life scenario briefings, and discussions around critical problems to find solutions. There will be practical hands on laboratory based tutorials, all underpinned by critically engaging seminars and lectures where necessary. There will also be numerous opportunities to learn from experts already working in the field and to attend site and factory visits where you will experience the topic for real. You will be supported on your learning journey throughout this degree by your personal academic mentor or studies advisor who will be there to guide and advise you on all aspects of your studies.

The creativity in the subjects while brought to life in the lecture theatres, tutorial rooms, and laboratories go well beyond the campus walls to the world you will inhabit as a graduate from this course. You will be challenged individually and through group activities to address real life, real time problems in a safe and stimulating environment.

In terms of assessment you will experience a wide variety of assessment opportunities across a contrasting and complementary range of coursework designed to assess the different competency levels and learning outcomes of the course. These approaches will also be supported by use of examinations in some of the modules where this is considered necessary. All the forms of assessment are designed with the overriding principle that they will allow you to showcase your ability to do that task in real life and that you understand the critical significance inherent in your decision making whilst working as a professional in this environment. Appropriate feedback on how well you are performing and how well you are developing is available throughout your time on the course. Consequently everything you will do is based on real life scenarios or simulating the experience, all with the aim of enabling you to graduate as one of the best graduates in this field in the world.

As a graduate BEng Safety Engineering and Disaster Management you will have the knowledge, skills and confidence to make a genuine difference in this world.

  • Read more

    Content

    The content for each course is summarised on the relevant course page, along with an overview of the modules that make up the course.

    Each course is approved by the University and meets the expectations of:

    • the relevant generic national Qualification Descriptor
    • the applicable Subject Benchmark Statement
    • the requirements of any professional, regulatory, statutory and accrediting bodies.

    Attendance and Independent Study

    As part of your course induction, you will be provided with details of the organisation and management of the course, including attendance and assessment requirements - usually in the form of a timetable. For full-time courses, the precise timetable for each semester is not confirmed until close to the start date and may be subject to some change in the early weeks as all courses settle into their planned patterns. For part-time courses which require attendance on particular days and times, an expectation of the days and periods of attendance will be included in the letter of offer. A course handbook is also made available.

    Courses comprise modules for which the notional effort involved is indicated by its credit rating. Each credit point represents 10 hours of student effort. Undergraduate courses typically contain 10- or 20-credit modules (more usually 20) and postgraduate course typically 15- or 30-credit modules.

    The normal study load expectation for an undergraduate full-time course of study in the standard academic year is 120 credit points. This amounts to around 36-42 hours of expected teaching and learning per week, inclusive of attendance requirements for lectures, seminars, tutorials, practical work, fieldwork or other scheduled classes, private study, and assessment. Part-time study load is the same as full-time pro-rata, with each credit point representing 10 hours of student effort.

    Postgraduate Master’s courses typically comprise 180 credits, taken in three semesters when studied full-time. A Postgraduate Certificate (PGCert) comprises 60 credits and can usually be completed on a part-time basis in one year. A 120-credit Postgraduate Diploma (PGDip) can usually be completed on a part-time basis in two years.

    Class contact times vary by course and type of module. Typically, for a module predominantly delivered through lectures you can expect at least 3 contact hours per week (lectures/seminars/tutorials). Laboratory classes often require a greater intensity of attendance in blocks. Some modules may combine lecture and laboratory. The precise model will depend on the course you apply for and may be subject to change from year to year for quality or enhancement reasons. Prospective students will be consulted about any significant changes.

    Assessment

    Assessment methods vary and are defined explicitly in each module. Assessment can be a combination of examination and coursework but may also be only one of these methods. Assessment is designed to assess your achievement of the module’s stated learning outcomes. You can expect to receive timely feedback on all coursework assessment. The precise assessment will depend on the module and may be subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.

    Coursework can take many forms, for example: essay, report, seminar paper, test, presentation, dissertation, design, artefacts, portfolio, journal, group work. The precise form and combination of assessment will depend on the course you apply for and the module. Details will be made available in advance through induction, the course handbook, the module specification and the assessment timetable. The details are subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.

    Normally, a module will have 4 learning outcomes, and no more than 2 items of assessment. An item of assessment can comprise more than one task. The notional workload and the equivalence across types of assessment is standardised.

    Calculation of the Final Award

    The class of Honours awarded in Bachelor’s degrees is usually determined by calculation of an aggregate mark based on performance across the modules at Levels 5 and 6, (which correspond to the second and third year of full-time attendance).

    Level 6 modules contribute 70% of the aggregate mark and Level 5 contributes 30% to the calculation of the class of the award. Classification of integrated Master’s degrees with Honours include a Level 7 component. The calculation in this case is: 50% Level 7, 30% Level 6, 20% Level 5. At least half the Level 5 modules must be studied at the University for Level 5 to be included in the calculation of the class.

    All other qualifications have an overall grade determined by results in modules from the final level of study. In Master’s degrees of more than 200 credit points the final 120 points usually determine the overall grading.

Academic profile

The cross-disciplinary nature of this course is very much reflected in the mix of staff you will learn with and from during your educational journey. There is an essential mix of world class researchers in the field coupled with a variety of staff with decades of industrial experience. This perfect fusion of expertise is available for you to experience on a course of this nature.

Also due to the global context within which this course is set there is an equally international teaching team with over 10 different nationalities represented. This multi-disciplinary and cosmopolitan team combines to create a course delivery team perfectly suited to supporting, guiding and teaching you how to operate professionally in this truly international and culturally diverse career.

The University employs over 1,000 suitably qualified and experienced academic staff - 59% have PhDs in their subject field and many have professional body recognition.

Courses are taught by staff who are Professors (25%), Readers, Senior Lecturers (18%) or Lecturers (57%).

We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic staff (81%) are accredited fellows of the Higher Education Academy (HEA) - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.

  • Read more

    The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise. The precise staffing for a course will depend on the department(s) involved and the availability and management of staff. This is subject to change annually and is confirmed in the timetable issued at the start of the course.

    Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.

    Figures correct for academic year 2019-2020.

Jordanstown campus

The largest of Ulster's campuses.


Important notice – campus change Students will complete the next two years on the Jordanstown campus (academic year 2019/20 and 2020/21). Thereafter, from 2021, they may transition campuses. Precise timings will be communicated as we progress through the final stages of the build of the enhanced Belfast campus. Find out more 

Accommodation

Jordanstown is our biggest campus in an idyllic setting surrounded by lush lawns and trees. It's just a few hundred metres from Loughshore Park and promenade, and just seven miles from Belfast city centre.

Find out more  


Sports Facilities

At our Jordanstown Campus we have world class facilities that are open all year round to our students and members of the public.

Find out more  


Student support

At Student Support we provide many services to help students through their time at Ulster University.

Find out more  


Jordanstown campus location info

  Find out more about our Jordanstown campus

Address

Ulster University
Shore Road
Newtownabbey
Co. Antrim
BT37 0QB

T: 028 7012 3456

Modules

Here is a guide to the subjects studied on this course.

Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.

Year one

Materials

Year: 1

An understanding of fundamental behaviour of materials used in civil engineering is essential for their correct specification, design and construction. This module introduces structure and properties of commonly used construction materials and examines their uses and limitations. It also investigates the basic properties and classification of soils. Practical classes help to underpin main principles covered in lectures.

Mathematics - BEng

Year: 1

This module covers those mathematics topics which graduates in the engineering discipline will require for professional practice. For certain engineering courses this module also provides a platform for the further study of mathematics.

The module starts with refresher topics, includes basic algebra, mathematical functions, polynomial equations, logarithms and exponentials, trigonometry, complex numbers, matrices and determinants, vectors, differentiation and integration, and finishes with subject of sequences and series.

Science for Engineers

Year: 1

Engineering is a rapidly evolving field requiring enhanced levels of competency in underpinning sciences. Physics and chemistry play a critical role in a number of engineering areas and energy applications. This module will provide a fundamental knowledge and understanding of the chemical and physical principles relevant to engineers.

Year two

Introducing Humanitarian Engineering

Year: 2

In humanitarian engineering human benefit is the primary concern. This module introduces you to both the principles of safety engineering and the humanitarian skills and practices needed to give you an understanding of the characteristics of disasters, emanating from natural or technological failures, conflicts and/ or complex emergencies. It will challenge you, inspire you and work to help you determine your personal motivation for humanitarian relief work and conceive the difficulties associated with delivering accurate real time design decisions in complex critical multi-criteria decision arenas. Case studies of disasters will be studied to help you to understand the impacts, lessons learned and your role as a humanitarian engineer.

Engineering Mechanics

Year: 2

Civil, Safety, and Energy engineering design and construction activities require knowledge of the forces due to the statical and dynamical behaviour of water and the statical behaviour of structures. Methods of determining forces arising from analyses using simple hydrostatics and hydrodynamics are given and applied to practical hydraulics problems. Common analysis methods for simple structures are introduced. Practical classes illustrate the use of these analysis methods at laboratory scale.

Project and Communication

Year: 2

The modern day built environment professional is required to communicate effectively utilising electronic tools with the rest of the project team. This has been mandated by the UK Cabinet Office Construction Strategy, by European Commission procurement regulations and is being followed across the world. This module develops an understanding of the key drivers and barriers to fully implementing Level 2 BIM and points towards the development of level 3 BIM working in the near future. The module develops the foundational skills for internationally recognised BIM Level 2 for the contemporary and future built environment professionals.

Year three

Mathematics for Engineers

Year: 3

This level 5 mathematics module is for engineering students on Built Environment programmes. It covers a variety of mathematical methods appropriate for the solution of problems in safety, civil, and architectural engineering. Emphasis is placed on applications in engineering contexts and problem solving tools, rather than on a rigorous exposition of their theoretical basis.

Safety: An International and Ethical Perspective

Year: 3

Examining health and safety from a global and an ethics reasoning perspective, this module addresses the various international protocols, demonstrating how they impact upon local regulation and professional practice. In the process students develop an understanding of the concept that designs must be such that they can be built, used, maintained and eventually demolished in a safe and healthy manner and through problem-based learning put the concept into practice.

Introduction to Combustion for Fire and Explosion Dynamics

Year: 3

This module will introduce the fundamental physical principles underlying fire and explosion development. Particular attention is given to the chemical and physical processes associated with fire as a combustion system, fire chemistry and toxicity, fire initiation, growth and spread in open and enclosed spaces, deflagrations and detonations, blast waves and combustion in closed vessel. Introduction is also given to mathematical methods of fire modelling.

Hazards and Risk Analysis

Year: 3

This module will introduce different hazards involved in a variety of aspects of engineering design and also various analysis and modelling tools based on fundamental principles of probability and statistics for risk assessment

Year four

Structural Engineering Design 2

Year: 4

This module considers durability, deformation characteristics, design and quality control of structural materials; philosophy and concepts of key design codes of practice; design methodology and procedures for reinforced concrete, structural steel, timber and brickwork elements, use of proprietary design and detailing computer packages for reinforced concrete and structural steel.

Human Factors and Behaviours

Year: 4

This module will develop the students' understanding and appreciation of the complexities of human factors and behaviours relevant to safety management and design. An understanding of human factors and behaviours is essential to ensuring the safety of occupants in buildings and the extended built environment. This module will address human factors relevant to the safety environment and behaviour in emergencies. In particular, it will focus on the psychological and behavioural responses of individuals, groups and wider society relative to emergency situations and the impact thereon.

Heat and mass transfer

Year: 4

The theory and applications covered in this module advance the knowledge of the student in the fundamental theory of fluid mechanics, heat transfer and thermodynamics. The emphasis is on more subject specific applications, particularly relevant to safety engineers.

Year five

Structural analysis and design 4

Year: 5

This module seeks to prepare students for participation in structural design and to introduce them to the basis for the use of structural design tools. The module stresses the benefits of the use of sketches in structural analysis and design and the appropriate applications of equilibrium, compatibility, material response relationships. Design is presented as following a rational methodology. Students participate in a design exercise which follows the major activities involved in producing a structural design.

Leading and Managing Emergency Response Teams

Year: 5

This module has been designed to provide students with a comprehensive understanding of modern methods of leading and managing emergency response projects which are by their very nature complex and highly demanding, involving a number of different and well-coordinated courses of action. Ultimately this module addresses the challenges of leading and managing people and resources in complex, challenging and demanding situations post disaster. Practical applications and case studies of relevant practice are used to enhance the learning experience.

Disaster Safety and Resilience

Year: 5

The module aims to develop the following skills; To retrieve and identify the principal man-made and natural hazards that a location is subject to. The identification of the assessment and mitigation measures to facilitate the measures of vulnerability, robustness and resilience for infrastructure, utilities and built environment. The ability to prioritise mitigation methods by cost, human safety and consequential effects. The assessment, management and recovery from extreme and hazardous incidents.

Year six

Research and Dissertation

Year: 6

The Research and Dissertation module provides the opportunity to explore in-depth an area of particular significance relating to the course of study. Students are responsible for collating information necessary for the selection and execution of the dissertation. They are required to critically evaluate the practicality, availability of reference material and access to individuals or records. Clear aims and objectives must be established, together with the methods to be used to attain these objectives. The dissertation is a mechanism that underwrites and supports analytical and evaluation skills, logical thought, and the ability to communicate effectively in terms of verbal and written material.

Prevention through Design

Year: 6

UK SPEC requires professional engineers to "…implement design solutions, taking account of critical constraints, including due concern for safety…". The prevention through design initiative, gaining influence in international design circles, addresses the need to develop safe design thinking among engineering undergraduates. This programme helps students to enhance their knowledge and understanding of safe design while developing their PtD analytical skills.

Occupational Health and Safety Management

Year: 6

The focus of this module is on the policies and strategies which influence health & safety management and the relevant procedures to deal with the control of serious and imminent danger and major accidents. The importance of the social, political and economic influences on health and safety, is also emphasized.

Entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

A level

The A Level requirement for this course is BCC to include two from: Mathematics, Physics, Chemistry, Biology, Geography, ICT, Technology or Engineering.

Candidates offering only ICT and/or Geography as the subject requirement are invited to interview. Other STEM subjects may be accepted after interview.

Applicants can satisfy the requirement for one of the A level grades (or equivalent) by substituting a combination of alternative qualifications recognised by the University.

Applied General Qualifications

Overall BTEC Extended Diploma in Aeronatical Engineering, Mechanical Engineering or Engineering with a profile of D,M,M with 7 Distinctions to include Applied Mathematics, Mathematics for Engineering Technicians, Further Mathematics or equivalent.

Irish Leaving Certificate

Overall Irish Leaving Certificate with grades H3, H3, H3, H4, H4 to include 2 from technological / scientific subjects and Mathematics and English at Grade O4.

Scottish Highers

The Scottish Highers requirement for this course is Grades CCCCC to include one from: Mathematics Physics, Chemistry, Biology, Geography, ICT, Technology or Engineering.

Candidates offering only ICT or Geography as the subject requirement are invited for interview.

Scottish Advanced Highers

The Scottish Advanced Highers requirement for this course is Grades CDD to include one from: Mathematics Physics, Chemistry, Biology, Geography, ICT, Technology or Engineering.

Candidates offering only ICT or Geography as the subject requirement are invited for interview.

International Baccalaureate

Overall International Baccalaureate profile minimum 24 points (12 at higher level).

Access to Higher Education (HE)

Overall Access profile with 65% in Science, Science & Technology, Engineering.

GCSE

GCSE Profile to include Mathematics and English at Grade C.

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Exemptions and transferability

There may be opportunities for students to transfer into the course from other courses in the school or the university on condition that the entry requirements of the course are met and the student is in good academic standing. Due to the unique nature of the programme students will most likely need to transfer into the course at Level 4 unless their academic record shows that they have already taken the pre-requisite modules.

There are also options for postgraduate study with courses such as our MSc Fire Safety Engineering.

United States of America flagAdditional information for students from United States of America

Undergraduate

Each programme will have slightly different requirements, both in terms of overall points and certain subjects, so please check the relevant subject in the undergraduate on-line prospectus.

Normally Ulster University welcomes applications from students with:

Qualification
High School Diploma with overall GPA 3.0 and to include grades 3,3,3 in 3 AP subjects
High School Diploma with overall GPA 3.0 and to include 1000 out of 1600 in SAT
Associate Degree with GPA 3.0

English Language


Financial Information

In addition to the scholarships and bursaries open to all international students, US students may apply for Federal and Private US loans

Qualification
Level 12 English Lang in HSD

View more information for students from United States of America  

Careers & opportunities

Graduate employers

Graduates from this course are now working for:

  • Aerospace Industry
  • Energy Industries
  • Global Management Consultancies
  • International Aid Agencies
  • Pharmaceutical Industry
  • United Nations

Job roles

With this degree you could become:

  • Emergency Response Team Leader
  • Humanitarian Relief Coordinator
  • Nuclear Safety Engineer
  • Principal Design Engineer
  • Process Safety Engineer

Career options

This course prepares you to use the intelligent design of systems and processes to provide innovate solutions and create more efficient organisations and industries. As a graduate from this course you will possess the highly desirable engineering skills that equip you to offer creative design and management solutions in the operation of complex engineering industries and delivery of humanitarian relief in the face of natural or man-made disasters. Some examples of the likely career options include:

Safety Engineer in industries such as chemical processing, aeronautics/ aerospace, pharmaceuticals, nuclear new build, energy transmission and supply and engineering design practices.

Humanitarian Aid/ Relief for national or international aid agencies, local and national government emergency planning departments, health and safety regulators and fire and rescue services.

Ulster University has a career development centre with dedicated career development consultants whose responsibility it is to provide you with specific career development learning and guidance. This normally includes offering you one-to-one or small group career guidance sessions, open employability seminars and workshops as well as tailored career development learning programmes. Additionally relationships are built with relevant graduate recruiters and professional bodies to help you to select and develop career opportunities most suited to you.

Professional recognition

Energy Institute (EI)

Accredited by the Energy Institute (EI) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partially meeting the academic requirement for registration as a Chartered Engineer.

Apply

Start dates

  • September 2019

Fees and funding

Fees (total cost)

Important notice - fees information

The tuition fees stated are for Academic Year 2020/21 for NI/ EU excluding GB*

*GB applies to a student who normally lives in England, Wales, Scotland and the Islands (Channel Islands and the Isle of Man).

Academic Year 2020/21 International and GB fees are not currently available. Further fees will be published when approved.

Correct at the time of publishing. All fees are subject to an annual increase. Terms and conditions apply. Additional mandatory costs are highlighted where they are known in advance. There are other costs associated with university study.

Northern Ireland & EU: £4,395

Additional mandatory costs

Tuition fees and costs associated with accommodation, travel (including car parking charges), and normal living are a part of university life.

Where a course has additional mandatory expenses we make every effort to highlight them. These may include residential visits, field trips, materials (e.g. art, design, engineering) inoculations, security checks, computer equipment, uniforms, professional memberships etc.

We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. Computer suites and free wifi is also available on each of the campuses.

There will be some additional costs to being a student which cannot be itemised and these will be different for each student. You may choose to purchase your own textbooks and course materials or prefer your own computer and software. Printing and binding may also be required. There are additional fees for graduation ceremonies, examination resits and library fines. Additional costs vary from course to course.

Students choosing a period of paid work placement or study abroad as part of their course should be aware that there may be additional travel and living costs as well as tuition fees.

Please contact the course team for more information.

Disclaimer

  1. The University endeavours to deliver courses and programmes of study in accordance with the description set out in this prospectus. The University’s prospectus is produced at the earliest possible date in order to provide maximum assistance to individuals considering applying for a course of study offered by the University. The University makes every effort to ensure that the information contained in the prospectus is accurate but it is possible that some changes will occur between the date of printing and the start of the academic year to which it relates. Please note that the University’s website is the most up-to-date source of information regarding courses and facilities and we strongly recommend that you always visit the website before making any commitments.
  2. Although reasonable steps are taken to provide the programmes and services described, the University cannot guarantee the provision of any course or facility and the University may make variations to the contents or methods of delivery of courses, discontinue, merge or combine courses and introduce new courses if such action is reasonably considered to be necessary by the University. Such circumstances include (but are not limited to) industrial action, lack of demand, departure of key staff, changes in legislation or government policy including changes, if any, resulting from the UK departing the European Union, withdrawal or reduction of funding or other circumstances beyond the University’s reasonable control.
  3. If the University discontinues any courses, it will use its best endeavours to provide a suitable alternative course. In addition, courses may change during the course of study and in such circumstances the University will normally undertake a consultation process prior to any such changes being introduced and seek to ensure that no student is unreasonably prejudiced as a consequence of any such change.
  4. The University does not accept responsibility (other than through the negligence of the University, its staff or agents), for the consequences of any modification or cancellation of any course, or part of a course, offered by the University but will take into consideration the effects on individual students and seek to minimise the impact of such effects where reasonably practicable.
  5. The University cannot accept any liability for disruption to its provision of educational or other services caused by circumstances beyond its control, but the University will take all reasonable steps to minimise the resultant disruption to such services.