RESEARCH GROUP: Diabetes Research Group

Project Title: Evaluation of the antidiabetic potential and mode of action of selected plants used traditionally for the treatment of diabetes

Supervisor(s): Dr Yasser Abdel-Wahab and Prof Neville McClenaghan

Level: PhD

Contact Details: y.abdel-wahab@ulster.ac.uk, Tel: (0)2870124354

Background to the project:
In many parts of the world, diet and plant-based dietary adjuncts are often used in the therapy of type 2 diabetes. In addition, the most commonly prescribed antidiabetic drug today, metformin, was originally from the plant *Galega officinalis*. Continuing research indicates that numerous plant derived compounds have the potential for development into drugs for treatment of humans with type-2 diabetes. Previous studies in our laboratory have provided substantial evidence for the antidiabetic actions of a large number of plant species. These include plants such as *Humulus lupulus*, *Medicago sativa*, *Agrimony eupatoria*, *Ocimum sanctum*, *Terminalia bellirica*, *Asparagus racemosus* and many more. Recently, we isolated insulinotropic compounds from the extracts of several natural antidiabetic plants. We have also characterised plants used traditionally in the treatment of diabetes in terms of their ability to inhibit starch digestion, slow glucose absorption, inhibit protein glycation and enhance insulin action. Many of these extracted plant materials also improved glucose tolerance and enhanced insulin release in animals with obesity-diabetes. This PhD project which forms part of larger ongoing investigation will focus on evaluation of the antidiabetic properties of selected plants taken from our existing library of traditional treatments for diabetes. As the opportunity arises, we will also evaluate additional specimens, gathered from around the world, which possess reputed benefits in improving diabetes control. Although bioactive plant extracts themselves will be useful as nutraceuticals, the project is also aimed at purification and structural elucidation of active compounds with a view to identifying new therapeutic drugs.

Objectives of the research project:
The overall aim of this research is evaluation of biological activities of plants used traditionally for the treatment of diabetes. The focus will initially be on Asian antidiabetic plants but it will also be possible to incorporate into the project other plant species with reputed antidiabetic properties depending on the interests of the applicant.

Specific objectives of the proposed project include evaluation of plant extracts to inhibit starch digestion, slow glucose absorption, inhibit protein glycation, decrease activity of DPPIV, stimulate secretion of insulin and incretin hormones as well as enhance insulin action. These in vitro studies will be followed by investigation of the anti-obesity and anti-diabetic effects of plants in animal models of diabetes. Acute and chronic in vivo effects of these phytochemicals on glucose tolerance, insulin sensitivity, food intake, body weight, body composition and metabolic parameters will be assessed. Finally, we propose to elucidate the chemical structure of active compounds by using bioassay-led purification techniques.

Methods to be used:
The proposed research will provide training in a wide range of techniques including: RP-HPLC, NMR, Ultrasound-assisted sequential extraction, Thin Layer Chromatography (TLC), Flash Chromatography, MALDI-TOF mass spectrometry; tissue culture; measurement of insulin secretion, signalling molecules (intracellular Ca^{2+} and other second messenger pathways); peptide iodination, cell morphology; ELISA; RIA;
short studies in animal of obesity-diabetes. Established collaborations are in place for structural characterization and large scale purification of plant materials. This research will generate novel IP, high quality publications and potential exploitation through pharmaceutical development.

Skills required of applicant:
The applicant should ideally have good practical laboratory, computer and skills and show enthusiasm and commitment to work diligently on all aspects the research project to completion under the leadership of his/her supervisors. A background in biomedical sciences, pharmacology, nutrition or a related subject would be desirable.

References:

