# **Testing the Tolerance Principle**

Xiaomeng Ma

# **Tolerance Principle**

#### Definition

Rule-based learning, such as past-tense acquisition, is commonly observed in language acquisition. But what leads to the use of the rules in the first place?

**Tolerance Principle**: Let *R* be a rule that applies to *N* items, of which *e* are exceptions. *R* is productive if and only iff:  $e \le \theta_N$ , where  $\theta = \frac{N}{lnN}$  (Yang, 2016).

Examples:

• If we have 20 verbs, and 5 are irregular verbs, will a rule be derived?

• 
$$N = 20$$
,  $e = 5$ ,  $\theta = \frac{N}{lnN} = \frac{20}{ln(20)} \approx 6.7$ .

- $e < \theta$ , so a rule **will** be derived
- If we have 10 verbs, and 5 are irregular verbs, will a rule be derived?

• 
$$N = 10, e = 5, \theta = \frac{N}{lnN} = \frac{10}{ln(10)} \approx 4.3.$$

•  $e > \theta$ , so a rule **won't** be derived

# Assumptions of the Tolerance Principle

- Why a Rule is deployed? A productive rule should be deployed when it delivers more efficient results than not using the rule.
  - For TP, more efficient = Faster
  - TP hypothesizes that a productive rule will reduce the average time of retrieving the target form.
- Dual-route model for the regular and irregular verb processing (Pinker & Prince, 1988).

#### **Dual-route Model**

- Regular Verbs: Processed by Rule Applying Mechanism
- Irregular Verbs: Processed through rote and associative memory
- Input goes into LEXICON for search, the LEXICON only contains the suffix and the irregular forms. If a match is found, then output the irregular form; else, apply the rule.



# **Table of Contents**

- 1. Introduction
- 2. Deriving the Tolerance Principle
- 3. Testing on Hypothetical Data
- 4. Testing the TP on Corpus Data

5. Discussion References39

# **Rule VS No Rule**

**Rule-based Model** 

**No-Rule Model** 



**Intuition:** Rule-based Model should save lexical retrieval time than No-Rule Model because there are fewer items to search in the LEXICON.

# No Rule: Calculating the time complexity (T)

- **LEXICON structure:** All the lexical items are stored in a ranked list based on their frequency, with the most frequent items at the top.
- Search function: Serial Search process (Forster, 1976, 1992): to retrieve an item at position *i*, the model sequentially searches all the *i*-1 items ranked higher than *i*.
- Intuition: the less frequent words take longer to retrieve than the more frequent words.
- Each word's average time complexity:  $p_i \cdot t_i$ ,  $p_i$  is the word's probability and  $t_i$  is its retrieval time.
- Average time complexity for the lexicon list:  $T = \sum_{i=1}^{N} (p_i \cdot t_i)$ .

# No Rule: Calculating the time complexity (T)

- $t_i$ : Assumes the rank hypothesis (Murray & Forster, 2004): the *i*-th ranked item takes *i* units of time to be retrieved,  $t_i = r_i$
- $p_i$ : Assumes the Zipfian distribution (Zipf, 1949): a word's frequency  $(f_i)$  times its rank  $(r_i)$  is a constant C:  $C = f_i \cdot r_i$ .

• Replacing 
$$f_i$$
 with  $\frac{C}{r_i}$ ,  $p_i = \frac{f_i}{\sum_{k=1}^N f_k} = \frac{\frac{C}{r_i}}{\sum_{k=1}^N \frac{C}{r_k}} = \frac{\frac{1}{r_i}}{\sum_{k=1}^N \frac{1}{r_k}}$ .  
• Insert:  $T = \sum_{i=1}^N (p_i \cdot t_i) = \sum_{i=1}^N (\frac{\frac{1}{r_i}}{\sum_{k=1}^N \frac{1}{r_k}} \cdot r_i) = \sum_{i=1}^N (\frac{1}{\sum_{k=1}^N \frac{1}{r_k}})$   
•  $\frac{1}{\sum_{k=1}^N \frac{1}{r_k}}$  is Harmonic number  $H_N$  and Yang approximated  $H_N \approx lnN$ 

• 
$$T_{NoRule} \approx \frac{N}{lnN}$$

# Rule: Calculating the time complexity

- Rule-based model divides the time complexity into two parts:  $T_E$  for the exceptions and  $T_R$  for the rule-based items.
- Assuming there are N items and e exceptions ( $e \leq N$ ).
- Exceptions are processed the same way in the no-rule model:  $T_E \approx \frac{e}{l_{Re}} \cdot \frac{e}{N}$
- Rule-based items are assumed to have the same time complexity because they are reached after a thorough search of *e* exceptions:  $T_R = e \cdot (1 \frac{e}{N})$ .

• 
$$T_{Rule} = \frac{e}{lne} \cdot \frac{e}{N} + e \cdot (1 - \frac{e}{N})$$

#### **Deriving the Tolerance Principle**

Assumption: more efficient = faster, so when  $T_{Rule} \leq T_{NoRule}$  a rule will be deployed. Solving the inequation:

$$\frac{e}{N} \cdot \frac{e}{lne} + (1 - \frac{e}{N}) \cdot e \le \frac{N}{lnN}$$

$$\frac{e}{N} \cdot (\frac{e}{lne} - e) + e \le \frac{N}{lnN}$$
(1)
(2)

Since 
$$\frac{e}{N} \cdot (\frac{e}{lne} - e) \le 0$$
, therefore  $e \le \frac{N}{lnN}$ .

When  $e \leq \frac{N}{lnN}$ , a rule will be deployed.

# **Table of Contents**

- 1. Introduction
- 2. Deriving the Tolerance Principle
- 3. Testing on Hypothetical Data
- 4. Testing the TP on Corpus Data

5. Discussion References39

# Problems with estimation $\frac{N}{lnN}$

Mathematically:  $\lim_{x\to\infty} (H_N - lnN) = \gamma$  where  $\gamma$  is Euler's constant  $\approx 0.58$ 

- The difference between  $H_N$  and lnN could be substantial for TP's calculation
- For example, when N = 10:  $\frac{N}{lnN} \approx 4.34$ ,  $\frac{N}{H_N} \approx 3.41$ .
- When there are 4 exceptions:
  - lnN says **yes** can be a rule (4 < 4.34).
  - $H_N$  says **no** there can't be a rule (4 > 3.41).

#### Problems with approximation of the inequation

Mathematically: 
$$e \leq \frac{N}{lnN}$$
 is not the solution to  $\frac{e}{N} \cdot (\frac{e}{lne} - e) + e \leq \frac{N}{lnN}$ 

- The difference between the **actual** solution of e and **estimated**  $\frac{N}{lnN}$  could be substantial.
- For example, when N = 20:  $\frac{N}{lnN} \approx 6.67$ , therefore  $e \leq 6.67$ .
- However, the true solution to the inequation is  $e \leq 8.73$ .
- When there are 7 exceptions, can a rule be derived?

#### Testing it with different Ns

• Calculating the **actual** threshold  $\theta$  using the Harmonic number by solving inequation:

$$\frac{e}{N} \cdot \frac{e}{lne} + (1 - \frac{e}{N}) \cdot e \le \frac{N}{lnN}$$

- Comparing the result with  $\frac{N}{lnN}$
- N = 10, 100, 1000

| Table: The predicted $\theta$ and actual $\theta$ with different | actual $\theta$ with different N |
|------------------------------------------------------------------|----------------------------------|
|------------------------------------------------------------------|----------------------------------|

| N     | Predicted $\theta$<br>N/ln(N) | Actual $\theta$ |
|-------|-------------------------------|-----------------|
| 10    | 4.34                          | 4.53            |
| 100   | 21.71                         | 23.24           |
| 1,000 | 144.76                        | 152.77          |

#### Plot: N = 10



#### Plot: N = 100



#### Plot: N = 1000



#### **Rank Matters**

- Intuition: In TP's calculation, the  $t_i$  is the rank of the item. What if the exceptions all have high ranks? How would that affect the solution of the inequation?
- Creating a hypothetical list of 10 items whose distribution follows a Zipfian distribution: 1st ranked item has a frequency of 100 and the 10th ranked item has a frequency of 1.
- Calculate the  $T_{Rule}$  and  $T_{NoRule}$  using the formula and find the solution to the inequation  $T_{Rule} \leq T_{NoRule}$ .

#### **Base Scenario: 10 items, All Exceptions**

Intuition: No Rule should be derived

| Itom   | Frequency | rank  | Time Complexity                      |
|--------|-----------|-------|--------------------------------------|
| item   | riequency | TALIK | $T = \sum_{i=1}^{N} (p_i \cdot t_i)$ |
| Excep. | 100       | 1     | 0.34 = 100/293 x 1                   |
| Excep. | 50        | 2     | 0.34 = 50/293 x 2                    |
| Excep. | 33        | 3     | 0.34 = 33/293 x 3                    |
| Excep. | 25        | 4     | 0.34 = 25/293 x 4                    |
| Excep. | 20        | 5     | 0.34 = 20/293 x 5                    |
| Excep. | 17        | 6     | 0.35 = 17/293 x 6                    |
| Excep. | 14        | 7     | 0.33 = 14/293 x 7                    |
| Excep. | 13        | 8     | 0.35 = 13/293 x 8                    |
| Excep. | 11        | 9     | 0.34 = 11/293 x 9                    |
| Excep. | 10        | 10    | 0.34 = 10/293 x 10                   |
| Total  | 293       |       | 3.42                                 |

# Scenario 1: 10 items, 7 exceptions

| Intuition: | No | Rule | should | be | derived | I. |
|------------|----|------|--------|----|---------|----|
|------------|----|------|--------|----|---------|----|

|         |           |              |                 | With a Rule |       |      |                                      |
|---------|-----------|--------------|-----------------|-------------|-------|------|--------------------------------------|
|         |           |              |                 | Excep.      | Freq. | rank | Time Complexity                      |
|         | I         | NO RUIE      |                 | Excep.      | 100   | 1    | $0.24 = 100/293 \times 1 \times 0.7$ |
| Verb    | Frequency | rank         | Time Complexity | Excep       | 50    | 2    | $0.24 = 50/293 \times 2 \times 0.7$  |
| Excep.  | 100       | 1            | 0.34            | Excep       | 33    | 3    | $0.24 = 33/293 \times 3 \times 0.7$  |
| Excep.  | 50        | 2            | 0.34            | Excep.      | 25    | 4    | $0.24 = 25/293 \times 4 \times 0.7$  |
| Excep.  | 33        | 3            | 0.34            | Excep.      | 20    | 5    | $0.24 = 20/203 \times 5 \times 0.7$  |
| Excep.  | 25        | 4            | 0.34            | Excep.      | 17    | 6    | $0.24 = 20/233 \times 0.7$           |
| Excep.  | 20        | 5            | 0.34            | Excep.      | 1/    | 7    | $0.24 - 17/293 \times 0 \times 0.7$  |
| Excep   | 17        | 6            | 0.35            | Excep.      | 14    | /    | $0.23 = 14/293 \times 7 \times 0.7$  |
| Excep.  | 14        | 7            | 0.33            | Iotai       |       |      | 1.07                                 |
| Pequiar | 13        | 8            | 0.35            | Regular     |       |      | Time                                 |
| Regular | 11        | 0            | 0.34            | Regular     | 13    |      |                                      |
| Regular | 10        | 7            | 0.34            | Regular     | 11    |      |                                      |
| Regular | 10        | 10           | 0.34            | Regular     | 10    |      |                                      |
| lotal   | 293       | $T_{NoRule}$ | 3.42            | Total       | 10    |      | $21 - 7 \times 0.2$                  |
|         |           |              |                 | TOTAL       |       |      | $2.1 = 7 \times 0.3$                 |
|         |           |              |                 | $T_{Rule}$  |       |      | 3.77 = 1.67 + 2.1 > 3.42             |

With a Pula

 $T_{Rule} = 3.77$ ,  $T_{NoRule} = 3.42$ , since  $T_{Rule} > T_{NoRule}$ , No rule will be derived.

#### Scenario 2: 10 items, 7 exceptions

Intuition: No Rule should be derived.

|         |           |              |                 |            |       | With  | a Rule                                                   |
|---------|-----------|--------------|-----------------|------------|-------|-------|----------------------------------------------------------|
|         |           |              |                 | Evcen      | Freq  | rank  | Time Complexity                                          |
|         | I         | No Rule      |                 | слеер.     | Fieq. | Tarik | $T_E = \sum_{i=1}^{N} (p_i \cdot t_i) \cdot \frac{e}{N}$ |
| Item    | Frequency | rank         | Time Complexity | Excep      | 100   | 1     | 0.24 = 100/293 x 1 x 0.7                                 |
| Excep.  | 100       | 1            | 0.34            | Excep      | 33    | 2     | 0.16 = 33/293 x 2 x 0.7                                  |
| Regular | 50        | 2            | 0.34            | Excep      | 25    | 3     | 0.18 = 25/293 x 3 x 0.7                                  |
| Excep.  | 33        | 3            | 0.34            | Excep      | 14    | 4     | 0.13 = 14/293 x 4 x 0.7                                  |
| Excep.  | 25        | 4            | 0.34            | Excep      | 13    | 5     | 0.16 = 13/293 x 5 x 0.7                                  |
| Regular | 20        | 5            | 0.34            | Excep      | 11    | 6     | 0.16 = 11/293 x 6 x 0.7                                  |
| Regular | 17        | 6            | 0.35            | Excep      | 10    | 7     | 0.17 = 10/293 x 7 x 0.7                                  |
| Excep.  | 14        | 7            | 0.33            | Total      |       |       | 1.19                                                     |
| Excep.  | 13        | 8            | 0.35            | Regular    |       |       | Time Complexity                                          |
| Excep.  | 11        | 9            | 0.34            | Regular    | 50    |       | $T_R = e \cdot (1 - \frac{e}{N})$                        |
| Excep.  | 10        | 10           | 0.34            | Regular    | 20    |       |                                                          |
| Total   | 293       | $T_{NoRule}$ | 3.42            | Regular    | 17    |       |                                                          |
|         |           |              |                 | Total      |       |       | <b>2.1</b> = 7 x 0.3                                     |
|         |           |              |                 | $T_{Rule}$ |       |       | <b>3.29</b> = 1.19 + 2.1 < 3.42                          |

 $T_{Rule} = 3.29$ ,  $T_{NoRule} = 3.42$ , since  $T_{Rule} < T_{NoRule}$ , rule will be derived.

# Discrepancies of the TP

- According to the TP, the number of exceptions (e) is the **only** factor determining whether a rule will be derived.
- Depending on the rank of the exceptions, the same number of exceptions would produce contradicting results. (e.g. In Scenario 1,  $T_{Rule} < T_{NoRule}$ , a rule will be derived. In Scenario 2,  $T_{Rule} > T_{NoRule}$ , a rule won't be derived.)
- Time complexity is not a fixed value. It varies depending on the rank permutation.

# **Testing the Rank Permutation**

- Observation: When the regulars are of highest ranks,  $T_{Rule}$  reaches its maximum. When the regulars are of the lowest ranks,  $T_{Rule}$  reaches its minimum.
- Using N = 10 exhaustively calculate the  $T_{Rule}$  for all rank permutations with different numbers of exceptions
- Solve the inequation  $T_{Rule} < T_{NoRule}$  to find the threshold  $\theta$ .

#### Permuation: N = 10



#### Further Test: N = 100, 1000

• Using N = 100, 1000 to calculate the  $T_{Rule(MAX)}$  and  $T_{Rule(MIN)}$  and find  $\theta_{min}$  and  $\theta_{max}$ .

| eger $\theta$ ) | N = 1000<br>133.59<br>144.76 |
|-----------------|------------------------------|
| B<br>egerθ)     | 133.59<br>144.76             |
| eger $\theta$ ) | 144.76                       |
| eger $\theta$ ) | 154                          |
|                 | 154                          |
|                 | 154                          |
| > 100)          | NA(> 1000)                   |
| eger $\theta$ ) |                              |
|                 | 158                          |
|                 | 007                          |
|                 |                              |

#### Permuation: N = 100



#### Permuation: N = 1000





Mathematical Discrepancies

- $\frac{N}{\ln N}$  is not a proper estimation of the maximum number of exceptions.
- $e \leq \frac{N}{lnN}$  is not a proper solution to the inequation  $T_{Rule} < T_{NoRule}$

When a rule is derived cannot be solely predicted on e

• Datasets with the same number of exceptions but different rank permutations can lead to contradicting results.

#### **More Problems**

Quadratic function of  $T_{Rule}$ 

- TP's assumption assumes that the exceptions and the  $T_{Rule}$  has a linear relationship: if e is smaller than a threshold,  $T_{Rule} < T_{NoRule}$ , thus a rule will be derived.
- However,  $T_{Rule}$  is obviously quadratic, there are two sets of data that fit the rule-deriving criterion  $T_{Rule} < T_{NoRule}$ :  $e \le \theta_{min}$  or  $e \ge \theta_{max}$ .
- For example, when N = 100 and 1000, and e > 97 or e > 997,  $T_{Rule} < T_{NoRule}$ , a rule can be derived, which is impossible.
- The basic assumption of the TP is flawed.

# **Table of Contents**

- 1. Introduction
- 2. Deriving the Tolerance Principle
- 3. Testing on Hypothetical Data
- 4. Testing the TP on Corpus Data

5. Discussion References39



One may argue that in real life many of the frequency permutations are not plausible and the quadratic pattern doesn't apply since there is a fixed number of exceptions.

Test the TP on past tense overregularization using children's corpus data.

# Yang (2016)'s testing

- Yang (2016) applied the TP to explain past tense acquisition on Adam's and Eve's data (Brown, 1973; MacWhinney, 2000).
- The first overregularization error (e.g. *\*holded*) is seen as the sign or rule being deployed.
- Data: first recording to the recording of overregularization error
  - Adam: 2;3 2;11
  - Eve: 1:6 1:10\*
- *N*: all the verb forms (including *-ing*, verb root, etc)the child produced.
- e: all the irregular verb forms the child produced.
- Results
  - Adam: N = 300, e = 57,  $\theta = N/lnN \approx 53$ , 57 > 53, failed X
  - Eve: N = 163, e = 49,  $\theta \approx 32$ , failed X
- Explanation: Sampling errors

# New Testing: Data

8 children's data from CHILDES.

|                  |            | files | Total Verb         | Irregular          | Total Verb | Irregular |
|------------------|------------|-------|--------------------|--------------------|------------|-----------|
|                  | Agendige   | riies | Types ( <i>N</i> ) | Types ( <i>e</i> ) | tokens     | tokens    |
| Adam             | 2;3 - 2;11 | 18    | 306                | 62                 | 6,747      | 3,632     |
| Eve <sup>1</sup> | 1;6 - 1;8  | 5     | 93                 | 36                 | 564        | 337       |
| Sarah            | 2;3 - 2;10 | 33    | 189                | 48                 | 1,759      | 1,035     |
| Peter            | 1;3 - 2;6  | 14    | 424                | 67                 | 7,532      | 3,647     |
| Naomi            | 1;3 - 1;11 | 20    | 128                | 43                 | 1,240      | 757       |
| Allison          | 1;5 - 2;11 | 6     | 88                 | 36                 | 612        | 335       |
| April            | 1;10 - 2;1 | 2     | 50                 | 19                 | 128        | 62        |
| Fraser           | 2;0 - 2;5  | 90    | 371                | 78                 | 13,924     | 9,903     |

# New Testing: Method

- Replicated Yang's method to count N and e.
- Compare e to N/lnN
- Compare e to N/H(N)
- Calculate  $T_{Rule}$  and  $T_{NoRule}$  using the verbs' actual rank and frequency and compare

#### **New Testing: Results**

\_

|         | Ν   | е  | $\theta_p$ | $e < \theta_p$ | $\theta_a$ | $e < \theta_a$ | $T_{NoRule}$ | $T_{Rule}$ | $T_{Rule} < T_{NoRule}$ |
|---------|-----|----|------------|----------------|------------|----------------|--------------|------------|-------------------------|
| Adam    | 306 | 62 | 53.5       | ×              | 48.6       | ×              | 33.80        | 51.33      | ×                       |
| Eve     | 93  | 36 | 20.5       | ×              | 18.2       | ×              | 17.51        | 25.11      | ×                       |
| Sarah   | 189 | 48 | 36.1       | ×              | 32.5       | ×              | 25.65        | 37.81      | ×                       |
| Peter   | 424 | 67 | 70.1       | 1              | 64         | ×              | 43.82        | 57.74      | ×                       |
| Naomi   | 128 | 43 | 26.4       | ×              | 23.6       | ×              | 19.63        | 31.23      | ×                       |
| Allison | 88  | 36 | 19.7       | ×              | 17.4       | ×              | 18.24        | 34.72      | ×                       |
| April   | 50  | 19 | 12.8       | ×              | 11.1       | ×              | 14.64        | 14.29      | ✓                       |
| Fraser  | 371 | 78 | 62.7       | ×              | 57.1       | ×              | 26.34        | 60.03      | ×                       |

 $\theta_n = N/lnN$  is the TP predicted  $\theta$ .  $\theta_a = N/H_N$  is the actual  $\theta$ .

Only Peter's actual e < N/lnN. Only April's  $T_{Rule} < T_{NoRule}$ 

# **Table of Contents**

- 1. Introduction
- 2. Deriving the Tolerance Principle
- 3. Testing on Hypothetical Data
- 4. Testing the TP on Corpus Data

5. Discussion References39

# Conclusion

On Hypothetical Data

• TP has several mathematical discrepancies that would lead to implausible results (e.g. when there are more than 97 exceptions in 100 items, a rule would be derived) or contradictory results (e.g. when there are 3 regulars in 10 items, if they rank 8,9,10, a rule can't be derived; otherwise a rule would be derived).

On Children's corpora Data

• Majority of the children's data don't conform to the TP's predictions.

# Why won't TP work?

Theoretical Assumption: a rule is derived to reduce time complexity.

- Alternative 1: the rule is derived to reduce both time complexity and memory space.
- Alternative 2: the rule is derived not for any utilitarian reasons.
- Operational Assumption: the time complexity has a linear relationship with the number of exceptions. The calculation relies on dual-route model, serial search process, rank hypothesis and Zipfian distribution.
  - Dual-route model vs Connectionist model
  - Serial search vs Parallel process
  - Modify  $t_i$  instead of using rank
  - Zipfian distribution doesn't really apply to small datasets

#### References

- Brown, R. (1973). *A first language: the early stages*. Cambridge, MA: Harvard University Press.
- Forster, K. I. (1976). Accessing the mental lexicon. *New approaches to language mechanisms*, 257–287.
- Forster, K. I. (1992). Memory-addressing mechanisms and lexical access. *Orthography, phonology, morphology, and meaning*, 413.
- MacWhinney, B. (2000). *The* CHILDES Project: *Tools for analyzing talk. transcription format and programs* (Vol. 1). Psychology Press.
- Murray, W. S., & Forster, K. I. (2004). Serial mechanisms in lexical access: the rank hypothesis. *Psychological Review*, 111(3), 721.
- Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. *Cognition*, *28*(1-2), 73–193.
- Yang, C. (2016). The price of linguistic productivity: How children learn to break the rules of language. MIT Press.
- Zipf, G. K. (1949). *Human behavior and the principle of least effort*. Cambridge: Addison-Wesley Press.



